• 제목/요약/키워드: Ventilation, VOCs (volatile organic compounds)

검색결과 49건 처리시간 0.024초

실측을 통한 신축공동주택의 주요 VOCs 물질 농도에 관한 연구 (A Study on Concentration of Volatile Organic Compounds in Newly-Apartment House by Measurement)

  • 김창남;김용경;이성진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1220-1224
    • /
    • 2008
  • Because of the high airtightness and insulation of the building, indoor environment has been largely polluted resulted from insufficient ventilation and occurrence of new air pollutant. These factors have made worse indoor air quality and caused symptoms of the SHS(Sick House Syndrome), MCS(Multi Chemical Sensitivity). The purpose of this study is to present the fundamental strategies for improving the Indoor Air Quality(IAQ) in newly-constructed apartment buildings. To investigate the concentration of indoor air pollutants such as Formaldehyde and VOCs, the field measurement were conducted.

  • PDF

지하시설 VOCs 제거를 위한 메탈 필터의 흡착기능부여 연구 (A Study on the Application of Adsorption Function in Metal Filter for the Removal of VOCs in Underground Facilities)

  • 장영희;이상문;양희재;김성수
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.633-638
    • /
    • 2019
  • 실내공기질 중 지하시설은 휘발성유기화합물(VOC, volatile organic compound)의 처리가 미흡한 실정이며, 이를 환기와 같은 확산법이 아닌 오염물질 저감하기 위하여 다양한 제조, 활성화법을 이용해 메탈 필터에 흡착성을 부여한 제올라이트 코팅 흡착 필터소재를 제조하였다. 그 결과, 메탈폼 지지체 대비 약 2~20배 이상 흡착 성능의 증진을 확인하였으며 이는 기공의 증진에 기반함을 SEM 분석으로 확인하였다. 또한 리그닌을 첨가함에 따라 13.95 mg/g의 흡착 성능을 확보하였으며, 세척 후에도 평균 13.25 mg/g의 유사한 흡착 성능을 확보하여 높은 내구성을 가진 흡착 필터소재를 제조하였음을 확인하였다. 개발된 흡착 필터소재는 지하시설 내 기계적 환기로의 농도 저감이 아닌 근본적으로 VOCs를 제어할 수 있는 해결방법으로 제시할 수 있을 것으로 판단하였다.

방청유 취급 근로자의 휘발성 유기화합물 노출 평가 (Exposure Assessment of Volatile Organic Compounds for Workers Handling Rust-preventive Oils)

  • 정윤경;최상준
    • 한국산업보건학회지
    • /
    • 제27권1호
    • /
    • pp.23-37
    • /
    • 2017
  • Objectives : This study was conducted to evaluate the level of exposure to volatile organic compounds (VOCs) among workers handling rust preventive oils. Methods : A total of 30 bulk samples and 54 personal air samples were collected using diffusive samplers at 22 workplaces handling rust preventive oils in Daegu and Gyongsangbuk-do Province from March to October 2013. We also investigated detailed information on the related work conditions, such as kinds of products, handling methods, local exhaustive ventilation systems, and the status of the wearing personal protective equipment. All bulk samples and air samples were analyzed using gas chromatography mass spectrometry (GC-MS) to identify components to which workers potentially were exposed. Quantitative airborne concentrations of VOCs were confirmed using gas chromatography with flame ionized detectors. Results : In terms of qualitative analyses for the 30 bulk samples, we found carcinogenic, mutagenic and reproductive toxic(CMR) substances such as butane(carcinogenic Group 1A, mutagenic Group 1B), butoxy ethanol(carcinogenic Group 2), cumene (carcinogenic Group 2), ethyl benzene(carcinogenic Group 2), methyl isobutyl ketone(carcinogenic Group 2) and toluene (reproductive toxic, Group 2). As a result of full-shift based personal air samples, eight substances such as n-hexane, n-heptane, octane, nonane, decane, toluene, ethyl benzene and xylene were detected. Among them, n-hexane and n-heptane were detected in all of 54 air samples with $13.13mg/m^3$ and $8.61mg/m^3$ of maximum concentration, respectively. The level of airborne concentration from all of samples were bellow the occupational exposure limit in Korea. Conclusions : Based on the results of this study, workers handling rust preventive oils could be exposed to CMR substances contained in rust preventive oils and n-hexane and n-heptane were found as the most frequent sources of VOC exposure.

Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories

  • Park, Seung-Hyun;Shin, Jung-Ah;Park, Hyun-Hee;Yi, Gwang-Yong;Chung, Kwang-Jae;Park, Hae-Dong;Kim, Kab-Bae;Lee, In-Seop
    • Safety and Health at Work
    • /
    • 제2권3호
    • /
    • pp.210-217
    • /
    • 2011
  • Objectives: The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. Methods: A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. Results: A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Conclusion: Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

식물-바이오필터에 의한 토양수분 안정화 및 실내 공기질 향상 (Stabilization of Soil Moisture and Improvement of Indoor Air Quality by a Plant-Biofilter Integration System)

  • 이창희;최봄;천만영
    • 원예과학기술지
    • /
    • 제33권5호
    • /
    • pp.751-762
    • /
    • 2015
  • 본 연구는 평면형 바이오필터를 설계하여 제작하고 이 바이오필터에 디펜바키아(Dieffenbachia amoena 'Marianne')의 식재 여부에 따라 환기 용량을 제어할 수 있는 토양 수분 안정화 정도를 측정하고 미세먼지, 휘발성 유기화합물 및 포름알데히드(HCHO)와 같은 실내공기 오염물질에 대한 바이오필터의 제거율을 비교하였다. 실험 결과 디펜바키아의 식재 여부에 관계없이 모두 일정한 상대습도, 온도 및 토양 수분 함량을 나타내었고 이 바이오필터에 식재한 디펜바키아도 정상적으로 생육하였다. 바이오필터에 의한 미세먼지 제거율을 보면, 미세먼지(PM10)와 초미세먼지(PM2.5)의 입자 수는 토양만 있는 경우 각각 30%와 2% 이상 제거되었고, 디펜바키아를 식재한 경우도 각각 40%와 4% 이상 제거되었다. 미세먼지(PM10) 무게에 따른 제거율은 토양만 있는 경우 4% 이상, 디펜바키아를 식재한 경우 20% 이상으로 나타났다. 토양만 채운 바이오필터는 xylene, ethylbenzene, toluene, total volatile organic compounds(T-VOCs)를 63% 이상 제거하였으나 benzene은 22% 이상, HCHO는 38% 이상을 제거하였다. 디펜바키아를 식재한 바이오필터는 xylene, ethylbenzene, toluene, T-VOCs를 72% 이상 제거하였고 benzene과 HCHO도 39% 이상 제거하였다. 따라서 식물과 바이오 필터를 결합한 시스템은 미세먼지의 제거보다 휘발성 유기 화합물의 제거에 대한 효과가 더 높은 것으로 나타났다. 본 연구에서 제작한 평면형 바이오필터는 실내 공기질 정화에 매우 효과가 있는 것으로 나타났으며, 식물과 바이오필터를 결합하였을 때 그 효과는 더욱 큰 것으로 확인하였다.

Characteristics of Volatile Organic Compounds Emitted in Building Materials and Their Predictions of Time-dependent Variation

  • Pang, Seung Ki;Sohn, Jang Yeul;Lee, Kwang Ho
    • Architectural research
    • /
    • 제7권1호
    • /
    • pp.19-26
    • /
    • 2005
  • Unlike other countries, Korea uses various kinds of wall-paper as finishing material. Conventional wall-paper consists of paper and vinyl, and petrochemical ink is used for the decoration of the surface. Adhesive is used to paste the wall with the wall-paper, which emit substantial amounts of VOCs and formaldehyde. In this study, VOCs characteristics emitted from specimens made of concrete, mortar, gypsum board and wall-paper were investigated using small chamber method. Moreover, concentration and emission factor of BTEX(Benzene, Toluene, Ethylbenzene, m,p,o-Xylene) and TVOC were investigated, and concentration and emission factor decay were estimated. As a result of the prediction, both time-dependent concentration decay and cumulative concentration can be converted into the logarithmic scale. Furthermore, prediction equations were developed from the experimental results under accurately controlled experimental conditions. Therefore, there may be difference if the estimated equations are directly applied to real buildings. Further research should be done on the generalization of the developed prediction equations.

건축물 실내 공기질 향상을 위한 광촉매 코팅 효과에 관한 연구 (A Study on the Effect of Photocatalyst Coating to Improve the Indoor Air Quality in Buildings)

  • 박현구;김종호;고성석
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.150-157
    • /
    • 2006
  • 새건물증후군이란 새로 지은 건물에서 생활하는 사람들에게 눈이 따갑거나 목이나 코가 아프거나, 두통, 구토, 피부발진 등 증상이 나타나는 것을 일컫는 말이다. 새집증후군 원인물질의 주요 성분으로는 건축 자재나 벽지, 페인트, 가구 접착제 등에서 발생되는 포름알데이드(HCHO)와 톨루엔 등 휘발성 유기화합물(VOCs: Volatile Oragnic Compounds), 부유 박테리아, 곰팡이, 바이러스 등이다. 새집증후군을 저감하기 위한 방법으로는 환기에 의한 방법, 오염물질이 없는 친환경 재료의 사용 및 재료의 처리를 통해 오염물질을 저감하고자 제거하는 방법이 있다. 본 연구는 이들 방법 중 건축 재료 위에 표면코팅처리를 함으로써 실내 공기질을 향상시키기 위한 것으로, 건물 내 표면 코팅 전후의 공기질을 분석함으로써 실내 거주환경을 안전하게 조성하는 데 그 목적이 있다.

접착제 취급 작업장 내 공기정화 설비를 이용한 휘발성 유기화합물 저감 평가 (Assessment of Volatile Organic Compound Reduction Using an Air Purification Facility in an Adhesive Handling Process)

  • 우재민;김동준;신지훈;민기홍;이채관;양원호
    • 한국환경보건학회지
    • /
    • 제49권2호
    • /
    • pp.78-88
    • /
    • 2023
  • Background: Exposure to volatile organic compounds (VOCs) can have acute and chronic health effects on human beings in general and in working environments. In particular, VOCs are often emitted in large quantities in industrial settings. In such circumstances, there is a need to improve the indoor air quality at workplaces. Objectives: The purposes of this study were to verify the effectiveness of air cleaning devices in workplaces and provide alternative solutions for improving working environments. Methods: Personal exposure and area level of VOCs for workers were evaluated in a car-part adhesive process before and after installing an air cleaning device with a TiO2-coated filter. Passive samplers and direct reading instruments were used to collect and analyze the VOCs, and the removal efficiency and improvement of air quality were evaluated. We also calculated the exposure index (EI) to assess the risk level in the workplace. Results: The removal efficiency for VOCs through the installation of the air cleaning device was approximately 26.9~69.0% as determined by the concentration levels before and after installation. The measured substances did not exceed the exposure limits for the work environment and the EI was less than 1. However, carcinogenic substances such as benzene, formaldehyde, carbon tetrachloride, and trichloroethylene were detected. Conclusions: The application of an air cleaning device can be a solution for controlling the indoor air quality in a workplace, particularly in cases where ventilation systems cannot be installed due to process limitations.

신개축 교사내 실내공기중 휘발성유기화합물과 폼알데히드의 농도 특성 (A Study for the Indoor Air Concentration of VOCs and HCHO in Newly Built and Remodeled Classrooms)

  • 박정호;양수명
    • 한국산업보건학회지
    • /
    • 제23권3호
    • /
    • pp.222-228
    • /
    • 2013
  • Objectives: The indoor air quality of newly-built (NC) and remodeled (RC) school classrooms was assessed. The primary aim was to show correlations between volatile organic compounds (VOCs) and formaldehyde (HCHO) pollutant levels. Methods: This study investigated the indoor air concentrations of VOCs and HCHO at 26 sites of newly built and 68 sites of remodeled classrooms located in South Gyeongsang Province between 2010 and 2012. VOCs in the indoor air were determined by adsorbent tube (Tenax TA) and automatic thermal desorption coupled with GC-MS analysis. Target analytes were five VOCs: benzene, toluene, ethylbenzene, xylene, and styrene. HCHO was collected with a 2,4-DNPH cartridge and analyzed by HPLC. Conclusions: This study estimated that indoor VOCs and HCHO concentrations in the classrooms were mainly affected by interior building materials and classroom equipment. For proper indoor air quality in schools, classroom air should be improved through reduction of hazardous materials by adequate ventilation, selecting environmental friendly materials, etc.

Efficiency Evaluation of Adsorbents for the Removal of VOC and NO2 in an Underground Subway Station

  • Son, Youn-Suk;Kang, Young-Hoon;Chung, Sang-Gwi;Park, Hyun-Ju;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권2호
    • /
    • pp.113-120
    • /
    • 2011
  • Adsorbent combination studies have been carried out to remove nitrogen dioxide ($NO_2$) and volatile organic compounds (VOCs: BTEX) out of a subway environment characterized by high flow and low concentration. Optimal conditions for the high removal efficiency of the concerned target compounds were obtained through testing a series of control factors such as adsorbent sorts, thicknesses, and superficial velocity. It was found that the efficiencies increased as the specific surface area of activated carbon and its thickness increased, and external void fraction decreased. Furthermore, mixed activated carbon with granular and constructed contents was extensively tested to reduce pressure drop through the carbon bed. It was found that the performance of higher contents of granular activated carbon was better than that of higher contents of the constructed carbon. When the mixed carbon was applied to the subway ventilation system in order to eliminate $NO_2$ and VOC simultaneously, the removal efficiencies were found to be 75% and 85%, respectively.