A Study on the Effect of Photocatalyst Coating to Improve the Indoor Air Quality in Buildings

건축물 실내 공기질 향상을 위한 광촉매 코팅 효과에 관한 연구

  • Park, Hyeon-Ku (Engineering Research Institute, Chonnam National University) ;
  • Kim, Jong-Ho (Department of Chemical Technology, Chonnam National University) ;
  • Go, Seong-Seok (School of Architecture, Chonnam National University)
  • 박현구 (전남대학교 공업기술연구소) ;
  • 김종호 (전남대학교 응용화학공학부) ;
  • 고성석 (전남대학교 건축학부)
  • Published : 2006.04.30

Abstract

Sick Building Syndrome (SBS) is an illness symptom such as irritation of eyes, skin eruption and vomit ing in newly constructed buildings. It is mainly due to the harmful gases from the materials installed in building such as Volatile Organic Compounds (VOCs), Semivolatile Organic Compounds (SVOCs), floating bacteria, fungi, fungal spores and viruses, human bioeffluents in many modem buildings. The general ways to improve the Indoor Air Quality (IAQ) are ventilating, utilizing eco-material without harmful gases and reducing or removing harmful gases through additional treatment to the building materials. This study aimed to improve the Indoor Air Quality(IAQ) by applying surface coating on the building materials and to make safe living environments through the analysis of air quality before and after surface coating treatment in buildings.

새건물증후군이란 새로 지은 건물에서 생활하는 사람들에게 눈이 따갑거나 목이나 코가 아프거나, 두통, 구토, 피부발진 등 증상이 나타나는 것을 일컫는 말이다. 새집증후군 원인물질의 주요 성분으로는 건축 자재나 벽지, 페인트, 가구 접착제 등에서 발생되는 포름알데이드(HCHO)와 톨루엔 등 휘발성 유기화합물(VOCs: Volatile Oragnic Compounds), 부유 박테리아, 곰팡이, 바이러스 등이다. 새집증후군을 저감하기 위한 방법으로는 환기에 의한 방법, 오염물질이 없는 친환경 재료의 사용 및 재료의 처리를 통해 오염물질을 저감하고자 제거하는 방법이 있다. 본 연구는 이들 방법 중 건축 재료 위에 표면코팅처리를 함으로써 실내 공기질을 향상시키기 위한 것으로, 건물 내 표면 코팅 전후의 공기질을 분석함으로써 실내 거주환경을 안전하게 조성하는 데 그 목적이 있다.

Keywords

References

  1. Jonathan. W. THE LANCET. 355. 1798. May 20, 2000
  2. ATSDR(Agency for Toxic Substances and Disease Registry). 1992. Toxicological profile for toluene. Draft. U.S. Department of Health and Human Services. Agency for Substances and Disease Registry
  3. ACGIH(American Conference of Governmental Industrial Hygienists). Threshold limit value for chemical substances and physical agents and Biological Exposure Indices. ACGIH, Cincinnati, Ohio, 1994
  4. H. T. Jeon, Y. C. Jeong and Y. J. Lee, The study on application of indoor air purification using photocatalyst oxidation reaction, Korea Institute of Ecological Architecture and Environment proceeding, 2004.11
  5. H. W. Joh, K. I. Kang et. al., An effects of aircatalyst element for reducing density of formaldehyde in a new house, Korea Institute of Construction, Vol. 4, No. 3, 2004.09
  6. T. K. Lee, Y. M. Kim et. al., Feasibility study of IAQ enhancement by visible light photocatalyst, Korea Institute of Ecological Architecture and Environment, Vol. 4, No. 2, 2004.06
  7. S. H. Kim, S. Y. Kwak, B. H. Sohn and T. H. Park, Design of $TiO_{2}$ nanoparticle self-assembled aromatic polyamide thin-film-composite(TFC) membrane as an approach to solve biofouling problem, Journal of Membrane Science, 211, 157-165, 2003 https://doi.org/10.1016/S0376-7388(02)00418-0
  8. Wang Z., Bai Z, Yu H., Zhang J. and Zhu T. Regulatory standards related to building energy conservation and indoor-air-quality during rapid urbanization in china. Energy and Building, 36, 1299- 1308, 2004 https://doi.org/10.1016/j.enbuild.2003.09.013
  9. Kalogerakis N., Paschali D., Lekaditis V., Pantidou A., Eleftheriadis K. and Lazaridis M. Indoor air quality-bioaerosol measurements in domestic and office premises. Journal of Aerosol science, 36, 751 -761, 2005 https://doi.org/10.1016/j.jaerosci.2005.02.004
  10. US EPA(Offices of Air and Radiation) Introduction to indoor air quality, a Reference Manual, EPA/400/3-91/003, section 7. US Government Printing Office, Washington, DC, 1991
  11. Sekine Y. and Nishimura A. Removal of formaldehyde from indoor air by passive type air-cleaning materials. Atmospheric Environment, 35, 2001- 2007, 2001 https://doi.org/10.1016/S1352-2310(00)00465-9
  12. Cox C.S. and Wathes C.M. Bioaerosols handbook. 1995, NY: Lewis Publishers
  13. Pavlovas V. Demand controlled ventilation: A case study for existing Swedish multifamily building. 36, 1029-1034, 2004 https://doi.org/10.1016/j.enbuild.2004.06.009