DOI QR코드

DOI QR Code

A Study on the Application of Adsorption Function in Metal Filter for the Removal of VOCs in Underground Facilities

지하시설 VOCs 제거를 위한 메탈 필터의 흡착기능부여 연구

  • Jang, Younghee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Yang, Heejae (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 장영희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이상문 (경기대학교 환경에너지공학과) ;
  • 양희재 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2019.08.07
  • Accepted : 2019.09.24
  • Published : 2019.10.10

Abstract

Indoor air quality underground facilities are not equipped for the removal of volatile organic compounds (VOCs) and they are usually treated by diffusion methods such as ventilation. In this study, an adsorption filter was prepared using various coating methods such as carbon nano fiber (CNF) and dip coating. As a result, the adsorption performance was improved by 2 to 20 times or more compared to that of using the metal foam support. This is maybe due to the enhancement of pore distribution which was confirmed by SEM. In addition, the adsorption performance was 13.95 mg/g by adding lignin, and also an average adsorption performance of 13.25 mg/g was maintained after washing indicating that a highly durable adsorption filter material was prepared. It can be suggested that the developed adsorption filter material can be a potential solution that can fundamentally control VOCs, not via the concentration reduction of mechanical ventilation in underground facilities.

실내공기질 중 지하시설은 휘발성유기화합물(VOC, volatile organic compound)의 처리가 미흡한 실정이며, 이를 환기와 같은 확산법이 아닌 오염물질 저감하기 위하여 다양한 제조, 활성화법을 이용해 메탈 필터에 흡착성을 부여한 제올라이트 코팅 흡착 필터소재를 제조하였다. 그 결과, 메탈폼 지지체 대비 약 2~20배 이상 흡착 성능의 증진을 확인하였으며 이는 기공의 증진에 기반함을 SEM 분석으로 확인하였다. 또한 리그닌을 첨가함에 따라 13.95 mg/g의 흡착 성능을 확보하였으며, 세척 후에도 평균 13.25 mg/g의 유사한 흡착 성능을 확보하여 높은 내구성을 가진 흡착 필터소재를 제조하였음을 확인하였다. 개발된 흡착 필터소재는 지하시설 내 기계적 환기로의 농도 저감이 아닌 근본적으로 VOCs를 제어할 수 있는 해결방법으로 제시할 수 있을 것으로 판단하였다.

Keywords

References

  1. I. H. Hwang, A Study on HCHO Oxidation Characteristics at Room Temperature Using a Pt/$TiO_2$ Catalyst Prepared by Liquid Reduction Method, Master Thesis, Kyonggi University, Suwon, Korea (2018).
  2. H.-K Namgung, J.-H. Song, S.-Y. Kim, H.-M. Kim, and S.-B. Kwon, Characteristics of indoor air quality in the overground and underground railway stations, J. Korea Acad. Ind. Coop. Soc., 17(5), 17-25 (2016). https://doi.org/10.5762/KAIS.2016.17.5.17
  3. S. MacLean, Global selves: Marginalised young people and aesthetic reflexivity in inhalant drug use, J. Youth Stud., 10(4), 399-418 (2007). https://doi.org/10.1080/13676260701360691
  4. S. L. Cruz and M. Dominguez, Misusing volatile substances for their hallucinatory effects: A qualitative pilot study with Mexican teenagers and a pharmacological discussion of their hallucinations, Subst. Use Misuse, 46(1), 84-94 (2011). https://doi.org/10.3109/10826084.2011.580222
  5. C. S. Rebert, S. S. Sorenson, R. A. Howd, and G. T. Pryor, Toluene-induced hearing loss in rats evidenced by the brainstem auditory-evokedresponse, Neurobehav. Toxicol. Teratol., 5(1), 59-62 (1983).
  6. G. T. Pryor, J. Dickinson, E. M. Feeney, and C. S. Rebert, Hearing loss in rats first exposed to toluene as weanlings or as young adults, Neurobehav. Toxicol. Teratol., 6(2), 111-119 (1984).
  7. G. T. Pryor, C. S. Rebert, J. Dickinson, and E. M. Feeney, Factors affecting toluene-induced ototoxicity in rats, Neurobehav. Toxicol. Teratol., 6(3), 223-238 (1984).
  8. A.-C. Johnson, L. Juntunen, P. Nylen, E. Borg, and G. Hoglund, Effect of interaction between noise and toluene on auditory function in the rat, Acta Otolaryngol., 105(1-2), 56-63 (1988).
  9. M. J. Sullivan, K. E. Rarey, and R. B. Conolly, Ototoxicity of toluene in rats, Neurotoxicol. Teratol., 10(6), 525-530 (1989). https://doi.org/10.1016/0892-0362(88)90088-8
  10. G. Pryor, C. Rebert, K. Kassay, H. Kuiper, and R. Gordon, The hearing loss associated with exposure to toluene is not caused by a metabolite, Brain Res. Bull., 27(1), 109-113 (1991). https://doi.org/10.1016/0361-9230(91)90290-Z
  11. K. M. Crofton, T. L. Lassiter, and C. S. Rebert, Solvent-induced ototoxicity in rats: An atypical selective mid-frequency hearing deficit, Hear. Res., 80(1), 25-30 (1994). https://doi.org/10.1016/0378-5955(94)90005-1
  12. C. S. Rebert, R. W. Schwartz, D. J. Svendsgaard, G. T. Pryor, and W. K. Boyes, Combined effects of paired solvents on the rat's auditory system, Toxicology, 105(2-3), 345-354 (1995). https://doi.org/10.1016/0300-483X(95)03232-5
  13. P. Campo, R. Lataye, B. Cossec, and V. Placidi, Toluene-induced hearing loss: A mid-frequency location of the cochlear lesions, Neurobehav. Toxicol. Teratol., 19(2), 129-140 (1997). https://doi.org/10.1016/S0892-0362(96)00214-0
  14. R. Lataye and P. Campo, Combined effects of a simultaneous exposure to noise and toluene on hearing function, Neurobehav. Toxicol. Teratol., 19(5), 373-382 (1997). https://doi.org/10.1016/S0892-0362(97)00049-4
  15. G. H. Choi, Performance evaluation of wireless and wired networks for monitoring and control of indoor air quality (IAQ) in subway stations, J. Korean Soc. Saf., 27(1) 1-6 (2012). https://doi.org/10.14346/JKOSOS.2012.27.1.001
  16. J. H. Yun, D. K. Choi, and S. H. Kim, Equilibria and dynamics for mixed vapors of BTX in an activated carbon bed, AIChE J., 45(4), 751-760 (1999). https://doi.org/10.1002/aic.690450410
  17. S. W. Kang, B. H. Min, and S. S. Suh, A study on cleaning process for benzene recovery in activated carbon bed, J. Korean Oil Chem. Soc., 19, 108-116 (2002).
  18. J. A. Ritter and R. T. Yang, Air purification and vapor recovery by pressure swing adsorption: A comparison of silicalite and activated carbon, Chem. Eng. Commun., 108(1), 289-305 (1991). https://doi.org/10.1080/00986449108910963
  19. P. Papaefthimiou, T. Ioannides, and X. E. Verykios, Catalytic incineration of volatile organic compounds present in industrial waste streams, Appl. Therm. Eng., 18(11), 1005-1012 (1998). https://doi.org/10.1016/S1359-4311(98)00021-0
  20. H. Wang, W. Yang, P. Tian, J. Zhou, R. Tang, and S. Wu, A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature, Appl. Catal. A, 529(5), 60-67 (2017). https://doi.org/10.1016/j.apcata.2016.10.016
  21. P. Papaefthimiou, T. Ioannides, and X. E. Verykios, Catalytic incineration of volatile organic compounds present in industrial waste streams, Appl. Therm. Eng., 18(11), 1005-1012 (1998). https://doi.org/10.1016/S1359-4311(98)00021-0
  22. S. Lau, K. Groody, A. Chan, and G. F. Ragib, Control of reduced sulphur and VOC emissions via biofiltration, Pulp Paper Canada, 107(12), 57-63 (2006).
  23. T. P. Kumar, M. Rahul, and B. Chandrajit, Biofiltration of volatile organic compounds (VOCs) - An overview, Res. J. Chem. Sci., 1(7), 83-92 (2011).
  24. E. Dumont, G. Darracq, A. Couvert, C. Couriol, A. Amrane, D. Thomas, Y. Andres, and P. L. Cloirec, VOC absorption in a countercurrent packed-bed column using water/silicone oil mixtures: Influence of silicone oil volume fraction, Chem. Eng. J., 168(1), 241-248 (2011). https://doi.org/10.1016/j.cej.2010.12.073
  25. F. Heymes, P. M. Demoustier, F. Charbit, J. L. Fanlo, and P. Moulin, Treatment of gas containing hydrophobic VOCs by a hybrid absorption-pervaporation process: The case of toluene, Chem. Eng. Sci., 62(9), 2576-2589 (2007). https://doi.org/10.1016/j.ces.2007.02.001
  26. F. Heymes, P. M. Demoustier, F. Charbit, J. L. Fanlo, and P. Moulin, A new efficient absorption liquid to treat exhaust air loaded with toluene, Chem. Eng. J., 115(3), 225-231 (2006). https://doi.org/10.1016/j.cej.2005.10.011
  27. G. Quijano, A. Couvert, A. Amrane, G. Darracq, C. Couriol, P. L. Cloirec, L. Paquin, and D. Carrie, Absorption and biodegradation of hydrophobic volatile organic compounds in ionic liquids, Water Air Soil Pollut., 224, 1528 (2013). https://doi.org/10.1007/s11270-013-1528-y
  28. Y. Liu, X. Feng, and D. Lawless, Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control, J. Membr. Sci., 271(1-2), 114-124 (2006). https://doi.org/10.1016/j.memsci.2005.07.012
  29. G. I. Taylor, Disintegration of water drops in an electric field, Proc. R. Soc. Lond. A, 280(1382), DOI:0.1186/1735-2746-10-15 (1964).
  30. S. N. Reznik, A. L. Yarin, A. Theron, and E. Zussman, Transient and steady shapes of droplets attached to a surface in a strong electric field, J. Fluid Mech., 516, 349-377 (2004). https://doi.org/10.1017/S0022112004000679
  31. M. Colupeau and B. Prunet-foch, electrostatic spraying of liquids in cone-jet mode, J. Electrostat., 22(2), 135-159 (1989). https://doi.org/10.1016/0304-3886(89)90081-8
  32. A. L. Yarin, S. Koombhongse, and D. H. Reneker, Taylor cone and jetting from liquid droplets in electrospinning of nanofibers, J. Appl. Phys., 90(1), 4836-4846 (2001). https://doi.org/10.1063/1.1408260
  33. J. J. Grodzinski, Polymeric materials for fuel cells: Concise review of recent studies, Polym. Adv. Technol., 18, 785-799 (2007). https://doi.org/10.1002/pat.935
  34. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, Nafion Impregnated electrospun polyethersulfone membrane for PEMFC, Membr. J., 20(1), 40-46 (2010).
  35. I.-H. Hwang, S.-Y. Choi, S. H. Lee, Y.-H. Lee, S. M. Lee, S.-C. Kim, and S. S. Kim, Electrospinning method-based CNF properties analysis and its application to electrode in electrolysis process, Appl. Chem. Eng., 28(2), 257-262 (2017). https://doi.org/10.14478/ace.2017.1012
  36. J. Choi, H. Yang, F. Ko, S. Chan, W. Chung, and S.S. Kim, Fabrication and characterization of palladium nanoparticle reinforced multifunctional lignin nanofiber mat, J. Nanosci. Nanotechnol., 16, 11046-11051 (2016). https://doi.org/10.1166/jnn.2016.13287
  37. S. H. Lee, S. Y. Choi, S. W. Chang, and S. S. Kim, A study on optimization of manufacture conditions for water treatment membrane by using electrospinning method, J. Korean Soc. Environ. Eng., 39(8), 456-461 (2017). https://doi.org/10.4491/KSEE.2017.39.8.456
  38. M. Jahangiri, J. Adl, S. J. Shahtaheri, A. Rashidi, A. Ghorbanali, H. Kakooe, A. Forushani, and M. R. Ganjali, Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge, Iran. J. Environ. Health Sci. Eng., 10(1): 15 (2013). https://doi.org/10.1186/1735-2746-10-15
  39. S. J. Park, J. R. Lee, and T. H. Ahn, A preparation of activated carbon by electrochemical surface treatment, Korean Patent 100228-413B1 (1999).
  40. Plasnix Co., LTD, Improvement of adsorbability of activated carbon by plasma surface modification, 26-35, Ministry of Science and ICT, Korea (2004).
  41. W.-C. Oh, J.-S. Park, H.-J. Lee, and M.-H. Yum, Elecrochemical removal efficiency of pollutants on ACF electrodes, Carbon Sci., 5(4), 191-196 (2004).
  42. P. R. Choi, J. C. Jung, Y.-S. Lim, and M.-S. Kim, Structural characterization and EDLC-electrode performance of Coal-Tar-Pitch activated carbon using $K_2CO_3$ treatment, Korean J. Mater. Res., 26(9), 460-467 (2016). https://doi.org/10.3740/MRSK.2016.26.9.460