• Title/Summary/Keyword: Veneering composite resin

Search Result 23, Processing Time 0.019 seconds

지르코니아 프라이머 종류에 따른 복합레진-지르코니아의 전단결합강도 (Effec of different zirconia primers on shear bond strengths of composite resin to bonded zirconia)

  • 석홍병;김태석;안재석;이정환
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The aim of this research was to evaluate the influence of different surface treatments on the shear bond strength of zirconia ceramic to composite resin. Methods: Seventy two cylinder-shape (diameter: 5 mm; height: 12 mm) blocks of experimental industrially manufactured Y-TZP ceramic were abraded with $125{\mu}m\;Al_2O_3$ particles and randomly divided into 4 groups. All the materials were categorized as group Gc(control group - composite resin veneering on zirconia surface), Gr - composite resin veneering after surface treatment of Rocatec system (3M ESPE, Seefeld, Germany) group; Gz - composite resin veneering after surface treatment of Zirconia primer (Z-primer, Bisco, U.S.A) group; Gm - composite resin veneering after surface treatment of zirconia primer (Monobond plus, ivoclar vivadent AG, Liechtenstein) group. Two different zirconia primers and Rocatec system were used to zirconia cylinders (n=16) onto the zirconia surface. Zirconia specimens, polished and roughened, were pretreated and composite bilayer cylinders bonded using conventional adhesive techniques. Results: Shear bond strengths were analyzed using single-factor ANOVA(p<0.05). Bond strength values achieved after airbone particle abrasion and zirconia surface pre-treatments(p<0.05). Conclusion: Shear bond strength tests denmonstrated that zirconia primer is a viable method to improved bond strength between zirconia ceramic core and veneering composites.

Y-TZP ceramic의 표면처리에 따른 전장용 레진의 전단결합강도 (Effect of Conditioning Methods on the Shear Bond Strength of Veneering composite on Zirconia Ceramic)

  • 남현석;송광엽;안승근;박주미
    • 구강회복응용과학지
    • /
    • 제26권3호
    • /
    • pp.253-264
    • /
    • 2010
  • 최근 개발된 Yttrium-stabilized-tetragonal-zirconia-polycrystal(Y-TZP ceramic)은 생체 친화적이며 높은 굴곡 강도, 파절 저항성, 파괴 인성을 지니고 CAD-CAM을 통해 milling이 가능하여 많은 치과 영역에서 사용되고 있다. 구치부 zirconia framework을 사용하는 고정성 수복물의 경우에는 상부 장석 도재의 상대적으로 높은 빈도의 파절을 보이고 있다. 복합레진은 취성이 적고 법랑질 보다 마모도가 낮으며 수리가 용이하다. 높은 교합압 부위에서 전장용 복합레진을 사용한 임플란트 수복은 기능적인 장점을 지니며 흥미롭게 여겨지고 있다. 이번 연구의 목적은 Y-TZP ceramic에 몇 가지 표면 처리를 시행하여 전장용 복합레진을 적용 시켰을 때 도재 전장시과 비교하여 임상적 활용을 위한 유용한 전단결합강도를 지니는지를 알고자 함이다.

Comparative study of the shear bond strength of various veneering materials on grade II commercially pure titanium

  • Lee, Eun-Young;Jun, Sul-Gi;Wright, Robert F.;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권1호
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSE. To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti). MATERIALS AND METHODS. Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in $5-55^{\circ}C$ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test. RESULTS. The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 ($12.11{\pm}4.44$ MPa); Ti-Triceram ($11.09{\pm}1.66$ MPa); Ti-Sinfony ($4.32{\pm}0.64$ MPa). All of these experimental groups showed lower shear bond strength than the control group ($16.14{\pm}1.89$ MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures. CONCLUSION. The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy.

보철물 조건에 따른 Periotest수치의 실험적 평가 (IN VITRO EVALUATION OF PERIOTEST VALUES UNDER VARIOUS CONDITIONS OF PROSTHESES)

  • 한중석
    • 대한치과보철학회지
    • /
    • 제35권4호
    • /
    • pp.793-800
    • /
    • 1997
  • Periotest(Siemens, Germany) has been used to test mobility of the implants clinically, however the effects of target materials and connection methods on the PTVs(Periotest Values) have not been evaluated. Periotest has been regarded as a reliable and objective tool to test implant and natural teeth mobility clinically, however this instrument showed different PTVs under various test conditions. This in vitro study was designed to compare PTVs of different veneering materials and prosthodontic designs (single and bridge restorations). To compare the effects of veneering materials on PTVs, 1 mm thickness of five different testing materials (porcelain, type III gold alloy, pure titanium, composite resin, acrylic resin) were placed on the resin block. Three full length of 13 mm Mark II implant fixtures were embedded into autopolymerizing resin block to fabricate single and bridge restorations. To evaluate effects of the connection method in single restorations, PTVs of screw retained(UCLA type) and cementation type(Cera-One system) were compared. Finally, to test reliability of PTVs of the final restorations, screw retained three unit short span PFM bridges were fabricated on the standard and Estheti-Cone abutments. All testing components were tightened with torque controller and PTVs of all specimens were measured 15 times for statistical analysis with SAS program. Following conclusions were made within the limit of this in vitro study. 1. PTVs of type III gold alloy, grade II titanium, composite resin veneering materials showed no significant differences, however acrylic resin and porcelain showed significant differences (P<0.05). 2. Single tooth restorations showed consistent PTVs as long as proper torque force was applied. 3. PTVs of bridge type prostheses was inconsistent regardless of abutment types. 4. PTVs of the prostheses showed higher scores and standard deviations than those of abutments regardless types of connection (P<0.05).

  • PDF

연마방법에 따른 복합레진의 활택도에 관한 연군 -Atomic Force Microscope를 이용한 연구 (A STUDY ON SURFACE ROUGHNESS OF COMPOSITE RESINS AFTER FINISHING AND POLISHING -an Atomic Force Microscope study)

  • 김형섭;우이형
    • 대한치과보철학회지
    • /
    • 제35권4호
    • /
    • pp.719-741
    • /
    • 1997
  • This study was undertaken to compare by Atomic Force Microscope the effects of various finishing and polishing instruments on surface roughness of filling and veneering composite resins. Seven composite resins were studied : Silux Plus (3M Dental Products, U.S.A.), Charisma (Heraeus Kulzer, Germany), Prisma THP (L.D.Caulk, Dentsply, U.S.A.), Photoclearfil (Kuraray, Japan), Cesead (Kuraray, Japan), Thermoresin LC (GC, Japan), Artglass (Heraeus Kulzer, Germany). Samples were placed and polymerized in holes (2mm thick and 8.5mm in diameter) machined in Teflon mold under glass plate, ensuring excess of material and moulded to shape with polyester matrix strip. Except control group (Polyester matrix strip), all experimental groups were finished and polishied under manufacturer's instructions. The finishing and polishing procedure were : carbide bur (E.T carbide set 4159, Komet, Germany), diamond bur (composite resin polishing bur set, GC, Japan), aluminum-oxide disc (Sof-Lex Pop-On, 3M Dental Products, U.S.A.), diamond-particle disc (Dia-Finish, Renfert Germany), white stone bur & rubber point( composite finishing kit, EDENTA, Swiss), respectively. Each specimens were evaluated for the surface roughness with Atomic Force Microscope (AutoProbe CP, Park Scientific Instruments, U.S.A.) under contact mode and constant height mode. The results as follows : 1. Except Thermoresin LC, all experimental composite resin groups showed more rougher than control group after finishing and polishing(p<0.1). 2. A surface as smooth as control group was obtained by $Al_{2}O_{3}$ disc all filling composite resin groups except Charisma and all veneering composite resin groups except Thermoresin LC(p<0.05). 3. In case of Thermoresin LC, there were no statistically significant differences before and after finishing and polishing(p>0.1). 4. Carbide bur, diamond bur showed rough surfaces in all composite resin groups, so these were inappropriate for the final polishing instruments.

  • PDF

COMPARATIVE STUDY OF SHEAR BOND STRENGTH BETWEEN CP-TI/CO-CR ALLOY AND COMPOSITE RESINS

  • Yoon, Se-Hee;Pae, Ahran;Lee, Seok-Hyung;Lee, Ho-Rim
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.805-814
    • /
    • 2007
  • Statement of problem. Composite resin-veneered metal restorations can be used as an alternative to porcelain-fused-metal restorations. But, because of the relatively low bond strength of veneering composite to metal framework, various surface treatment methods have been introduced to improve the bond strength. Purpose. The object of this study was to compare the shear bond strength of different combinations of each of the two bonding systems and each of the two composite veneering resins to cp-Ti/Co-Cr alloy. Material and methods. Two resin bonding systems (metal conditioner containing MEPS monomer, tribochemical silicoating system) and two composite resins (Gradia, Sinfony) were tested on cp-Ti and Co-Cr alloy. Then, according to manufacturers' instructions, resin bonding systems and composite resins were applied. All test specimens were divided into four groups for each alloy; I) sandblast + Metal Primer II + Gradia (MG), II) sandblast + Metal Primer II + Sinfony (MS), III) Rocatec + Gradia (RG), IV) Rocatec + Sinfony (RS). The shear bond strength was determined using a universal testing machine and all data were statistically analyzed with Mann-Whitney test and Kruskal-Wallis test at the significance level of 0.05. Results. The mean (standard deviations) of shear bond strength according to the combinations of two bonding systems and two composite resins to cp-Ti arranged from 16.44 MPa to 17.07 MPa and the shear bond strength to Co-Cr alloy ranged from 16.26 MPa to 17.70 MPa. The result shows that the difference were not statistically significant. Conclusion. The shear bond strengths of composite resins to both cast cp-Ti and Co-Cr alloy were not significantly different between the metal conditioner and the tribochemical silicoating system. And no differences in bond strength were found between cp-Ti and Co-Cr alloy.

Shear bond strength of composite resin to titanium according to various surface treatments

  • Lee, Seung-Yun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.68-74
    • /
    • 2009
  • STATEMENT OF PROBLEM. When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE. The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS. The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera$^{TM}$, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at $25^{\circ}C$ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-$5^{(R)}$, United Calibration, USA). These values were statistically analyzed. RESULTS. 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION. Within the limitations of this study, all methods of surface treatment used in this study are clinically available.

골유착성 임프란트와 자연치를 이용한 고정성 국소의치에서 응력분산 및 충격흡수에 관한 유한요소법적 응력분석 (A FINITE ELEMENT STRESS ANALYSIS OF THE STRESS DISTRIBUTION AND THE SHOCK ABSORPTION IN AN OSSEOINTEGRATED IMPLANT-NATURAL TOOTH SUPPORTED FIXED PARTIAL DENTURE)

  • 정창모;이호용
    • 대한치과보철학회지
    • /
    • 제30권4호
    • /
    • pp.582-610
    • /
    • 1992
  • The long-term success of any dental implant is dependent upon the optimization of stresses which occur during oral function and parafunction. Especially, it has been suggested that there is an unique set of problems associated with joining an osseointegrated implant and a natural tooth with a fixed partial denture. For this particular case, although many literatures suggest different ways to avoid high stress concentrations on the bone surrounding the implant under static and dynamic loading conditions, but few studies on the biomechanical efficacy of each assertion have been reported. The purpose of this investigation was to evaluate the efficacies of clinically suggested methods on stress distribution under static load and shock absorption under dynamic load, using two dimensional finite element method. In FEM models of osseointegrated implant-natural tooth supported fixed partial dentures, calculations were made on the stresses in surrounding bone and on the deflections of abutments and superstructure, first, to compare the difference in stress distribution effects under static load by the flexure of fastening screw or prosthesis, or intramobile connector, and second, to compare the difference in the shock absorption effects under dynamic load by intramobile connector or occlusal veneering with composite resin. The results of this analysis suggest that : 1. Under static load condition, using an implant design with fastenign screw connecting implant abutment and prosthesis or increasing the flexibility of fastening screw, or increasing the flexibility of prosthesis led to the .increase in height of peak stresses in cortical bone surrounding the implant, and has little effect on stress change in bone around the natural tooth. 2. Under static load condition, intramobile connector caused the substantial decrease in stress concentration in cortical bone surrounding the implant and the slight increase in stress in bone around the natural tooth. 3. Under dynamic load condition, both intramobile connector and composite resin veneering showed shock absorption effect on bone surrounding the implant and composite resin veneering had a greater shock absorption effect than intramobile connector.

  • PDF

강화형 치관용 복합레진의 인장강도에 관한 연구 (A STUDY ON THE TENSILE STRENGTH OF REINFORCED VENEERING COMPOSITE RESINS FOR CROWN)

  • 안승근;강동완
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.226-241
    • /
    • 2000
  • Recently a new generation of crown and bridge veneering resins containing submicron glass fillers was introduced. These ultrasmall particle hybrid composite materials distinguish themselves, compared with conventional microfill crown and bridge resins, through improved mechanical properties. It is claimed that these composites are suitable for metal free crowns and even bridges using fiber reinforcement. The purpose of this study was to evaluate the effect of thermal cycling on the tensile strength of the following veneering composites: Artglass(Heraeus Kulzer Co., Wehrheim, Germany), Estonia(Kuraray Co.. Japan), Sculpture(Jeneric Pentron Co., Wallingford, U.S.A.), and Targis(Ivoclar Co., Schaan Liechenstein). According to manufacturer's instructions, rectangular tensile test specimens measuring $1.5{\times}2.0{\times}4.5mm$ were made using a teflon mold. Whole specimens were divided into two groups. One group was dried in a desiccator at $25^{\circ}C$ for 10 days, and another group was subjected to thermal cycling($10,000{\times}$) in water($5/55^{\circ}C$). All test specimens were placed in a universal testing machine and loaded until fracture with a crosshead speed of 0.5mm/min. Weibull analysis and Tukey's test were used to analyze the data. The fracture surfaces of specimens were observed in SEM and the aliphatic C=C absorbance peak of Estenia and Targis resin was analyzed using Fourier transform infrared(FTIR) spectroscopy. Within the limitations imposed in this study, the following conclusions can be drawn: 1. Both in drying condition and thermal cycling condition, the highest tensile strength was observed in Estenia testing group(p<0.05). 2. The strength data were at to single-mode Weibull distribution, and the Weibull modulus of all veneering composite resin specimens increased after thermal cycling treatment. 3. After thermal cycling test, the highest tensile strength was observed in the Estenia group, and the lowest value was observed in the Targis group. The tensile strength values showed the significant differences between each group(p<0.05) 4. The aliphatic C=C absorbance peak of Estonia and Targis resin was decreased after light curing, and there was no distinct change after thermal cycling.

  • PDF

Repair bond strength of resin composite to bilayer dental ceramics

  • Ataol, Ayse Seda;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권2호
    • /
    • pp.101-112
    • /
    • 2018
  • PURPOSE. The purpose of this study was to investigate the effect of various surface treatments (ST) on the shear bond strength of resin composite to three bilayer dental ceramics made by CAD/CAM and two veneering ceramics. MATERIALS AND METHODS. Three different bilayer dental ceramics and two different veneering ceramics were used (Group A: IPS e.max CAD+IPS e.max Ceram; Group B: IPS e.max ZirCAD+IPS e.max Ceram, Group C: Vita Suprinity+Vita VM11; Group D: IPS e.max Ceram; Group E: Vita VM11). All groups were divided into eight subgroups according to the ST. Then, all test specimens were repaired with a nano hybrid resin composite. Half of the test specimens were subjected to thermocycling procedure and the other half was stored in distilled water at $37^{\circ}C$. Shear bond strength tests for all test specimens were carried out with a universal testing machine. RESULTS. There were statistically significant differences among the tested surface treatments within the all tested fracture types (P<.005). HF etching showed higher bond strength values in Groups A, C, D, and E than the other tested ST. However, bonding durability of all the surface-treated groups were similar after thermocycling (P>.00125). CONCLUSION. This study revealed that HF etching for glass ceramics and sandblasting for zirconia ceramics were adequate for repair of all ceramic restorations. The effect of ceramic type exposed on the fracture area was not significant on the repair bond strength of resin composites to different ceramic types.