• 제목/요약/키워드: Velocity reconstruction

검색결과 91건 처리시간 0.027초

전문가와 일반인의 급제동 특성 및 바퀴 잠김 속도 비교 (Comparison of Rapid Braking Characteristics between an Expert Driver and a General Person)

  • 김기남;이지훈;김민석;유완석
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.12-18
    • /
    • 2009
  • Skid mark and coefficient of friction are usually utilized to calculate the velocity and behavior of vehicles. For a critical case such as traffic accident reconstruction, however, the initial velocity of the car should be calculated precisely. In this study, in order to estimate the speed at the brake onset, rapid braking tests were executed on the proving ground. We compared with a skid length and wheel locking time of an expert driver and a general person. We verified that the skid mark of expert driver occurs longer than general person's. A new method is proposed to determine the speed of a vehicle at the brake onset of maximum braking, which could be applied to a reconstruction of vehicle with Non-ABS.

Comparing Changes in Knee Muscle Strength after Reconstruction of the Anterior and Posterior Cruciate Ligaments

  • Hyun, SangWook;Kim, SoHee;Kim, TaeHo
    • The Journal of Korean Physical Therapy
    • /
    • 제31권6호
    • /
    • pp.339-345
    • /
    • 2019
  • Purpose: The purpose of this study was to identify changes in knee muscle strength after reconstruction of the anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL). Methods: Thirteen subjects (males) with anterior ligament injury and ten subjects (males) with posterior ligament injury voluntarily participated in this study. Both groups were evaluated at the pre-and post-reconstruction stages using an isokinetic dynamometer. Peak torque, total work, and the hamstrings to quadriceps (H/Q) peak torque ratio were calculated at angular velocities of 60°/sec and 180°/sec. Statistical analysis was conducted on SPSS 18.0 for Windows using t-tests to compare mean differences. Results: At an angular velocity of 60°/sec, both the ACL and PCL groups showed a significant increase in muscle strength in the flexors and extensors. Muscle strength in the extensors was significantly increased in the PCL group compared to the ACL group. At an angular velocity of 180°/sec, the ACL group showed a significant increase in muscle endurance in the flexors and extensors, and the PCL group showed a significant increase in muscle endurance in the flexors. At angular velocities of 60°/sec and 180°/sec, the H/Q peak torque ratio increased in the ACL group but decreased in the PCL group. Consequently, the H/Q peak torque ratio was significantly different for the two groups. Conclusion: The results suggest that the patients with ACL injury should focus on strengthening the knee extensors and that the patients with PCL injury need to strengthen the knee flexors.

한국형 보행자 사고재현 모형 개발에 관한 연구 (Development of Korean Pedestrian Accident Reconstruction Model)

  • 이수범;류태선
    • 대한교통학회지
    • /
    • 제23권6호
    • /
    • pp.103-113
    • /
    • 2005
  • 교통사고 중 차대보행자 사고의 원인분석은 차대차 사고에 비해 관련 연구가 미흡한 실정이다. 국내에서도 차대차 사고의 경우에는 실차충돌실험을 통해 많은 자료를 축척하고 이를 체계화하여 다각적인 방법으로 실제 교통사고에 적용하려는 노력이 있으나 차대보행자 사고의 경우에는 아직 시작단계라고 볼 수 있다. 선진국에서는 차대보행자 사고에 대하여 더미를 이용한 실차충돌실험을 통해 많은 모형을 개발하였고, 이를 보행자사고의 정확한 원인분석을 위해 활용하고 있다. 국내에서는 차대보행자 사고의 해석과 관련된 모형이 개발되지 않아 외국의 모형을 그대로 활용하는 것이 일반적이다. 그러나 외국의 모형을 이용하게 되면 차량과 보행자의 체위특성이 다른 경우 왜곡된 결과가 도출될 가능성이 많게 된다. 이러한 문제점을 해결하기 위해 본 연구에서는 그 동안 수집된 보행자 사고자료를 이용하여 국내 실정에 적합한 차대보행자 충돌모형을 개발하였다. 그 결과 차량의 속도에 따라 외국의 모형과는 다소 상이한 결과를 보이는 것으로 나타났다. 외국의 모형 중에서는 차량 및 보행자의 체위 특성이 유사한 일본의 모형과 가장 흡사한 것으로 나타났다. 이 연구 결과는 수십개의 자료를 이용한 것으로 장래에 보다 폭넓은 자료를 통하여 모형의 신뢰성을 높이는 노력이 필요하다고 판단된다.

디지털 Micro Holographic PTV기법을 이용한 미세 곡관 내부 3차원 유동 측정 (Measurement of 3-D Flow inside a Micro Curved-tube using Digital Micro Holographic Particle Tracking Velocimetry)

  • 김석;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2579-2584
    • /
    • 2007
  • A digital micro holographic particle tracking velocimetry (HPTV) system consisting of a high-speed camera and a single laser with acoustic optical modulator (AOM) chopper was established. The digital micro HPTV system was applied to water flow in a micro curved-tube for measuring instantaneous 3-D velocity field data consecutively. The micro curved-tube is using to reproduce the dorsal aorta or utilize in various lap-on-a-chip. The temporal evolution of a three-dimensional water flow in the micro curved-tube (the curvature, ${\kappa}$=1/${\phi}$, 2/${\phi}$, 4/${\phi}$, 8/${\phi}$) of 100 ${\mu}m$ and 300 ${\mu}m$ inner diameters was obtained and mean velocity field distribution was obtained by statistical-averaging the instantaneous velocity fields.

  • PDF

Particle Image Velocimetry 기법을 이용하여, Chemical Mechanical Polishing 공정시 Slurry 유동장 측정 (Measurement of the Slurry Flow-Field during Chemical Mechanical Polishing)

  • 신상희;김문기;고영호;김호영;이재동;홍창기;윤영빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.125-128
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some Previous works shows that RR is determined by production of pressure and velocity and NC is also largely affected by velocity of flow-field during CMP. This study is about the direct measurement of velocity of slurry during CMP and reconstruction whole flow-field by Particle Image Velocimetry(PIV) Techniques. Typical PIV system is tuned adequately for inspecting CMP and Slurry Flow-field is measured by changing both Pad RPM and Carrier RPM. The results show that velocity is majorly determined not by Carrier RPM, but by Pad RPM.

  • PDF

Digital Holographic PIV 기법의 개발과 제트유동에의 응용 (Development of Digital Holographic PIV Technique and Its Application)

  • 김석;이상준
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.123-130
    • /
    • 2005
  • A digital in-line holographic particle image velocimetry (HPIV) which can be applied to measure three-dimensional velocity fields of turbulent flows was developed. There are three different implementation methods of HPIV: traditional film-based HPIV, intermediate HPIV and digital HPIV. The traditional film-based HPIV and intermediate HPIV method is rather troublesome to do experiments and takes long calculation time, compared with the digital HPIV, Configuration of the digital in-line HPIV is simple and the data processing routine is similar to conventional 2D PIV methods. The digital HPIV velocity field measurement consists of four steps: recording, numerical reconstruction, particle extraction and velocity extraction. In the velocity extraction process, we improved PTV algorithm to extract the displacement of particle each placed in 3D space. The developed digital in-line HPIV system was applied to a vertical jet flow. The 3D velocity vectors measured by the digital HPIV method in the near field are in a good agreement with 2D PIV results.

Enhanced data-driven simulation of non-stationary winds using DPOD based coherence matrix decomposition

  • Liyuan Cao;Jiahao Lu;Chunxiang Li
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.125-140
    • /
    • 2024
  • The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.

Accuracy and applicable range of a reconstruction technique for hybrid rockets

  • Nagata, Harunori;Nakayama, Hisahiro;Watanabe, Mikio;Wakita, Masashi;Totani, Tsuyoshi
    • Advances in aircraft and spacecraft science
    • /
    • 제1권3호
    • /
    • pp.273-289
    • /
    • 2014
  • Accuracy of a reconstruction technique assuming a constant characteristic exhaust velocity ($c^*$) efficiency for reducing hybrid rocket firing test data was examined experimentally. To avoid the difficulty arising from a number of complex chemical equilibrium calculations, a simple approximate expression of theoretical $c^*$ as a function of the oxidizer to fuel ratio (${\xi}$) and the chamber pressure was developed. A series of static firing tests with the same test conditions except burning duration revealed that the error in the calculated fuel consumption decreases with increasing firing duration, showing that the error mainly comes from the ignition and shutdown transients. The present reconstruction technique obtains ${\xi}$ by solving an equation between theoretical and experimental $c^*$ values. A difficulty arises when multiple solutions of ${\xi}$ exists. In the PMMA-LOX combination, a ${\xi}$ range of 0.6 to 1.0 corresponds to this case. The definition of $c^*$ efficiency necessary to be used in this reconstruction technique is different from a $c^*$ efficiency obtained by a general method. Because the $c^*$ efficiency obtained by average chamber pressure and ${\xi}$ includes the $c^*$ loss due to the ${\xi}$ shift, it can be below unity even when the combustion gas keeps complete mixing and chemical equilibrium during the entire period of a firing. Therefore, the $c^*$ efficiency obtained in the present reconstruction technique is superior to the $c^*$ efficiency obtained by the general method to evaluate the degree of completion of the mixing and chemical reaction in the combustion chamber.

실도로 주행 조건 기반의 자율주행자동차 고위험도 평가 시나리오 개발 및 검증에 관한 연구 (A Study on Development of High Risk Test Scenario and Evaluation from Field Driving Conditions for Autonomous Vehicle)

  • 정승환;유제명;정낙승;유민상;편무송;김재부
    • 자동차안전학회지
    • /
    • 제10권4호
    • /
    • pp.40-49
    • /
    • 2018
  • Currently, a lot of researches about high risk test scenarios for autonomous vehicle and advanced driver assistance systems have been carried out to evaluate driving safety. This study proposes new type of test scenario that evaluate the driving safety for autonomous vehicle by reconstructing accident database of national automotive sampling system crashworthiness data system (NASS-CDS). NASS-CDS has a lot of detailed accident data in real fields, but there is no data of accurate velocity in accident moments. So in order to propose scenario generation method from accident database, we try to reconstruct accident moment from accident sketch diagram. At the same step, we propose an accident of occurrence frequency which is based on accident codes and road shapes. The reconstruction paths from accident database are integrated into evaluation of simulation environment. Our proposed methods and processor are applied to MILS (Model In the Loop Simulation) and VILS (Vehicle In the Loop Simulation) test environments. In this paper, a reasonable method of accident reconstruction typology for autonomous vehicle evaluation of feasibility is proposed.

설암 환자에서 경부청소술 및 재건술에 따른 수술 전 후 기도 내 공기 유동 특성 (Flow Characteristics of Upper Airway After Neck Dissection and Reconstructive Surgery in Tongue Cancer Patients)

  • 송재민;서희림;염은섭
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.90-95
    • /
    • 2024
  • This study examined changes in airway airflow characteristics before and after extensive surgery for tongue cancer, which includes neck dissection and reconstruction. Pre- and post-operative CBCT scans were used to model 3D upper airways. Computational fluid dynamics (CFD) simulations analyzed airflow and pressure variations. Results showed a significant reduction in airway volume post-surgery, especially in the posterior tongue and epiglottis areas, leading to increased airflow velocity and complex vortex formations. Pressure drop analysis revealed that post-surgery, higher negative pressure is required for inhalation, indicating increased breathing effort. This suggests that the surgical removal of cancerous tissues and lymph nodes, along with reconstruction, alters airway geometry significantly, potentially impacting respiratory function. The findings highlight the clinical importance of assessing airway changes in tongue cancer surgery to anticipate and mitigate postoperative respiratory complications.