• Title/Summary/Keyword: Velocity correction

Search Result 236, Processing Time 0.02 seconds

Granite Strength Estimation of Construction Considering Surface Roughness Effect on Ultrasonic Velocity Method (화강석 건조물의 표면 거칠기별 초음파속도법에 의한 강도 추정)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Kim, Jeong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.137-145
    • /
    • 2010
  • The mechanical properties of stone structures are generally characterized according to the strength of the stone used. An ultrasonic velocity method that does not damage cultural heritages is used to measure the strength of stone. However, there is no correction involved for surface roughness and thickness of the stone in the ultrasonic method currently used. In addition, a contact agent such as grease can cause contamination on the surface of a cultural heritage. Accordingly, this study suggests an indirect method of strength estimation formula for stone structures based on the surface roughness of the structure, its thickness, and the type of contact agent. (1) Rock strength estimation formula using ultrasonic velocity method of dabbed finish : $f_{su}=30.51\;Vp^{0.82}(R^2=95)$ (2) Rock strength estimation formula using ultrasonic velocity method of harsh finish : $f_{su}=61.52\;Vp^{0.32}(R^2=92)$.

Crustal Structure of the Korean Peninsula By Travel Time Inversion of Local Earthquakes

  • Song, Seok-Gu;Lee, Gi-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.21-33
    • /
    • 2001
  • Simultaneous inversion of first-arrivals of local earthquakes recorded by the Korea Meteorological Administration(KMA) seismograph network from 1991 to 1998 is made to derive 1D crustal velocity structure of the Korean peninsula. Twenty-nine events with 178 observations are used in the inversion. Average crustal P-wave velocity turns out to be about 6.3 km/sec, and crustal thickness and upper mantle P-wave velocity are estimated as 33 km and 7.9 km/sec, respectively. Results of inversion indicate the possibility of the low velocity layer in the lower crust. Joint inversion is applied to estimate hypocenters, station delays, and velocities simultaneously. Relative station corrections for 11 stations range from zero to about 1.2 sec. Analysis of the synthetic data shows that estimates of hypocenter locations and station corrections as well as averaged crustal structure are reliable for the given data set..

  • PDF

Liquefaction Assessment Variations with Regard to the Cyclic Resistance Ratio Estimation Methods (전단저항강도비 산정 방법에 따른 액상화 평가의 변화)

  • Song, Sungwan;Kim, Hansaem;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • Recently, as the number of earthquakes increases in the Korean Peninsula and surrounding area, the importance of earthquake countermeasures and seismic design has been increasing. As a result, interest and concerns about liquefaction, which is one of the problems that concern the earthquake, are increasing. There are various methods that can assess the possibility of liquefaction by using geotechnical information for specific ground. However, direct comparisons of each method are not yet available. In this study, the two methods using the SPT-N value and the shear wave velocity among the methods for estimating the Cyclic Resistance Ratio (CRR) value required for the simplified liquefaction assessment method were compared. And the correction of the ground information required to use the two methods respectively was compared. As a result, more accurate evaluation results were obtained when the CRR value is calculated using the SPT-N values.

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.

Study on Applicability of River Revetment Design for consideration of Velocity Variation due to Meandering and Scour Effect (만곡 및 세굴 영향에 의한 유속변화를 고려한 호안설계방법 적용성 검토)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.17-25
    • /
    • 2016
  • Revetments help protect levee slopes from erosion. If the design of the revetment is not appropriate, the levee may collapse as a result of scouring due to the strong flow velocity and tractive force. Therefore, when designing a revetment, it is very important to calculate the representative velocity. However, the average velocity and depth calculated by 1-D varied flow analysis are generally applied to the design, which do not reflect the increase in velocity caused by the free and force vortex. Therefore, it is necessary to correct the representative velocity in order to ensure the stability of the revetment in a meandering channel. In this study, the applicability of the method of calculating the representative velocity considering the curve and scour was studied (by comparing it with) the average and maximum velocities determined by numerical simulation. The representative velocity corrected for the effect of the curve and scour and the maximum velocity calculated by the numerical simulation were found to match quite well. In addition, the riprap size of the gabion in the meandering and straight channels were compared by applying them to the conventional design formulas. In the future, it is necessary to perform additional numerical simulations for various rivers with different characteristics, in order to propose a method of designing a suitable revetment for Korean characteristics. At this time, the results of this study are expected to be able to be used as basic data.

A study on the Factors Affected on the P- and S-wave Velocity Measurement of the Acrylic and Stainless Steel Core (아크릴 및 스테인리스강 시험편의 P-, S-파 속도 산출에 미친 영향 요인 고찰)

  • Lee, Sang-Kyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.305-315
    • /
    • 2011
  • A total of 864 measurements for P- and S- wave velocity of acrylic and stainless steel core samples have been performed with respect to their lengths and axial load applied. S-wave velocity measurement was much harder than P-wave velocity, so that it showed higher deviation in measured S-wave velocity with respect to repeated measurement, length of the cores, and the axial load applied. Velocity measurements for acrylic cores showed more stable and less than half of the variation between the measurements than the stainless steel cores. This seems to be come from better coupling between the transducers and acrylic cores than stainless cores, and from larger value of the first arrival time in a similar system noise environments. From the analysis of the 864 measurements, it is recommended that the length of the core be 60 ~ 90 mm, axial load between 20 kg (27.7 $N/cm^2$) and 30 kg (41.6 $N/cm^2$) for measurement of wave velocity of the acrylic and stainless steel cores. Especially for measuring S-wave velocity of stainless steel core, core length should be less than 50 mm, otherwise it will be affected by mode conversion or others. These results can be used in measurement and correction for system delay in wave velocity measurement for rock cores.

Development of Surface Velocity Measurement Technique without Reference Points Using UAV Image (드론 정사영상을 이용한 무참조점 표면유속 산정 기법 개발)

  • Lee, Jun Hyeong;Yoon, Byung Man;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.22-31
    • /
    • 2021
  • Surface image velocimetry (SIV) is a noncontact velocimetry technique based on images. Recently, studies have been conducted on surface velocity measurements using drones to measure a wide range of velocities and discharges. However, when measuring the surface velocity using a drone, reference points must be included in the image for image correction and the calculation of the ground sample distance, which limits the flight altitude and shooting area of the drone. A technique for calculating the surface velocity that does not require reference points must be developed to maximize spatial freedom, which is the advantage of velocity measurements using drone images. In this study, a technique for calculating the surface velocity that uses only the drone position and the specifications of the drone-mounted camera, without reference points, was developed. To verify the developed surface velocity calculation technique, surface velocities were calculated at the Andong River Experiment Center and then measured with a FlowTracker. The surface velocities measured by conventional SIV using reference points and those calculated by the developed SIV method without reference points were compared. The results confirmed an average difference of approximately 4.70% from the velocity obtained by the conventional SIV and approximately 4.60% from the velocity measured by FlowTracker. The proposed technique can accurately measure the surface velocity using a drone regardless of the flight altitude, shooting area, and analysis area.

A Study on Matching Pursuit Interpolation with Moveout Correction (시간차 보정을 적용한 Matching Pursuit 내삽 기법 연구)

  • Lee, Jaekang;Byun, Joongmoo;Seol, Soon Jee;Kim, Young
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.103-111
    • /
    • 2018
  • The recent research aim of seismic trace interpolation is to effectively interpolate the data with spatial aliasing. Among various interpolation methods, the Matching Pursuit interpolation, that finds the proper combination of basis functions which can best recover traces, has been developed. However, this method cannot interpolate aliased data. Thus, the multi-component Matching Pursuit interpolation and moveout correction method have been proposed for interpolation of spatially aliased data. It is difficult to apply the multi-component Matching Pursuit interpolation to interpolating the OBC (Ocean Bottom Cable) data which is the multi-component data obtained at the ocean bottom because the isolation of P wave component is required in advance. Thus, in this study, we dealt with an effective single-component matching Pursuit interpolation method in OBC data where P-wave and S-wave are mixed and spatial aliasing is present. To do this, we proposed the Ricker wavelet based single-component Matching Pursuit interpolation workflow with moveoutcorrection and systematically investigated its effectiveness. In this workflow, the spatial aliasing problem is solved by applying constant value moveout correction to the data before the interpolation is performed. After finishing the interpolation, the inverse moveout correction is applied to the interpolated data using the same constant velocity. Through the application of our workflow to the synthetic OBC seismic data, we verified the effectiveness of the proposed workflow. In addition, we showed that the interpolation of field OBC data with severe spatial aliasing was successfully performed using our workflow.

Development of Unfolding Radial Velocity Algorithm for Dual PRF Mode of Yong-In Testbed(YIT) Radar (용인테스트베드레이다를 이용한 Dual PRF 모드의 시선속도 접힘 풀기 알고리즘 개발)

  • Kim, Hye-Ri;Suk, Mi-Kyung;Nam, Kyung-Yeub;Ko, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.521-530
    • /
    • 2016
  • Weather radar is observation equipment that transmits electromagnetic waves and receives backscattered signals from the targets. The weather radar systems of the Korea Meteorological Administration have a doppler mode that can extract the target's radial velocity. However, the radial velocity over the maximum unambiguous velocity(${\nu}_m$) for which is in a trade-off relationship with the maximum unambiguous range is folded. Therefore, a dual PRF mode of which transmits and receives signals using two different PRFs(high and low) must be used to extend the vm while maintaining the maximum unambiguous range. Using a dual PRF mode, vm can be extended to the amount of lowest common denominator of two observed vm from high and low PRF. For this extension, we have developed a velocity unfolding algorithm of which uses several criteria for classification considering observed velocity differences between high and low PRF and their error boundary. Then, correction factors are calculated for each class and are applied to unfold radial velocity. The developed algorithm was applied to the Yong-In Testbed(YIT) radar and the generated better performance of radial velocity extraction than those of the previous system.

Design the Guidance and Control for Precision Guidance Munitions using Reference Trajectory (기준궤적을 이용한 탄도수정탄 유도제어기 설계)

  • Sung, Jae min;Han, Eu Jene;Song, Min Sup;Kim, Byoung Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.181-188
    • /
    • 2015
  • This paper present, the result of the guidance and control law for a course correction munitions(CCM) with 2sets of canards positioned in the rotating nose section. The nonlinear simulation model of the CCM was developed based on 7DOF equation of motion. The ability of correcting position was verified by open-loop control input with nonlinear model. The guidance and control command was constructed by reference trajectory which can be obtained with no control. Finally, the performance of the guidance and control law was evaluated through Monte-carlo simulation. The CEP(Circular Error Probability) was obtained by considering the errors in muzzle velocity, aerodynamic coefficient, wind, elevation and azimuth angle and density.