DOI QR코드

DOI QR Code

A study on the Factors Affected on the P- and S-wave Velocity Measurement of the Acrylic and Stainless Steel Core

아크릴 및 스테인리스강 시험편의 P-, S-파 속도 산출에 미친 영향 요인 고찰

  • Lee, Sang-Kyu (Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Tae-Jong (Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2011.09.26
  • Accepted : 2011.10.30
  • Published : 2011.11.30

Abstract

A total of 864 measurements for P- and S- wave velocity of acrylic and stainless steel core samples have been performed with respect to their lengths and axial load applied. S-wave velocity measurement was much harder than P-wave velocity, so that it showed higher deviation in measured S-wave velocity with respect to repeated measurement, length of the cores, and the axial load applied. Velocity measurements for acrylic cores showed more stable and less than half of the variation between the measurements than the stainless steel cores. This seems to be come from better coupling between the transducers and acrylic cores than stainless cores, and from larger value of the first arrival time in a similar system noise environments. From the analysis of the 864 measurements, it is recommended that the length of the core be 60 ~ 90 mm, axial load between 20 kg (27.7 $N/cm^2$) and 30 kg (41.6 $N/cm^2$) for measurement of wave velocity of the acrylic and stainless steel cores. Especially for measuring S-wave velocity of stainless steel core, core length should be less than 50 mm, otherwise it will be affected by mode conversion or others. These results can be used in measurement and correction for system delay in wave velocity measurement for rock cores.

암석시료에 대한 음파 속도측정의 정확성을 검증하고 정밀한 측정을 위한 기초적인 실험의 일환으로 아크릴과 스테인리스강 재질의 시료에 대하여 길이와 축하중을 달리하여 각각에 대해 3회씩 측정한 총 864 경우에 대하여, 시험편을 통과한 초동 주시를 측정하고 분석하였다. 축하중이 가해진 상태에서의 S-파 측정은 P-파에 비해 측정에 어려움이 있었으며 이에 따라 반복측정, 길이, 축하중에 의한 편차도 S-파가 훨씬 크게 나타났다. 또한, 재질에 따라서는 스테인레스강 시편보다는 아크릴 시편의 초동주시 편차가 약 2배 정도 양호하게 나타났으며 이는 아크릴 시험편의 경우가 트랜스 듀서와 시험편 간의 접촉 coupling이 안정적이며 또한 동일한 시간 분해능이나 유사한 전기적 잡음에 비하여 초동 주시가 길기 때문으로 판단된다. 실험결과, 아크릴 시험편과 스테인리스강 시험편의 탄성파 속도를 측정할 때는 60 ~ 90 mm 정도의 길이를 갖는 시험편을 20 kg (27.7 $N/cm^2$) ~ 30 kg (41.6 $N/cm^2$) 내외의 축하중 하에서 측정하는 것이 가장 좋으며, 스테인리스강 시험편의 S-파 속도는 길이 50 mm 이하의 시험편을 사용하여 측정해야 한다. 이러한 실험 결과는 암석 코어의 속도 측정시 시스템 지연의 측정 및 보정에 활용될 수 있을 것이다.

Keywords

References

  1. 권병두, 허식, 1988, 탄질에 따른 석탄의 물성 변화, 대한광산지질학회, 21(1), 97-106.
  2. 권병두, 진홍성, 1987, 탄전지역에 분포하는 퇴적암류의 물리적 특성 연구, 한국지구과학회지, 8(2), 133-142.
  3. 김영화, 1983, 지진파속도에 미치는 영향요인에 대한 실험적 연구, 대한지질학회지, 19(3), 136-144.
  4. 김영화, 장보안, 김재동, 이찬구, 문병관, 1997, 압축피로에 의한 포천화강암의 P파속도 변화 특성, 자원환경지질, 30(3), 231-240.
  5. 김영화, 홍순호, 1990, 풍화현상에 수반되는 화강암의 물성변화에 관한 연구, 대한광산지질학회지, 23(2), 221-232
  6. 성낙훈, 2010, 암석 물성측정 시스템 구축 및 물성 데이터베이스 활용, 박사학위논문, 전북대학교, 117p.
  7. 서만철, 우영균, 송석환, Hao, T., 2000, 충남지역 초염기성 암체의 지구물리학적 연구: 탄성파 속도 측정, 한국지구과학회지, 21(3), 349-358.
  8. 이상규, 이태종, 성낙훈, 2010, "자동.연속 측정장치를 이용한 석모도 지표 암석의 탄성파 속도 특성 분석", 한국지구시스템공학회지, 47(5), 756-770.
  9. 한국암반공학회, 2005, 한국암반공학회 표준암석시험법 암석의 탄성파속도 측정 표준시험법, 터널과 지하공간, 15(4), 239-242.
  10. ASTM, D-2845-08 Standard method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock.
  11. Hall, K. W., Gallant, E. V., McKellar, M., Ursenbach, C. P., Stewart, R. R., and Maini, B. B., 2002, "3D ultrasonic imaging of a heavy oil recovery model", CSEG Conference 2002 (http://www.cseg.ca/conventions/abstracts/2002/index.cfm, Jul. 25, 2010).
  12. ISRM, 1977, Suggested methods for determining sound velocity.
  13. Palanichamy, P., Joseph, T., Jayakumar, T., and Baldev R., 1995, Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel, NTD & E International, 28(3), 179-185.