• 제목/요약/키워드: Velocity Distribution

검색결과 2,683건 처리시간 0.032초

Accretion Flow and Raman-scattered O VI and C II Features in the Symbiotic Nova RR Telescopii

  • Heo, Jeong-Eun;Lee, Hee-Won;Angeloni, Rodolfo;Palma, Tali;Di Mille, Francesco
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.39.2-39.2
    • /
    • 2018
  • RR Tel is an interacting binary system in which a hot white dwarf (WD) accretes matter from a Mira variable via gravitational capture of the stellar wind. We present a high-resolution optical spectrum of RR Tel obtained with MIKE at Magellan-Clay telescope, Chile. We find broad emission features at 6825, 7082, 7023, and $7053{\AA}$, which are formed through Raman scattering of far-UV O VI ${\lambda}{\lambda}$ 1032 and $1038{\AA}$, C II ${\lambda}{\lambda}$ 1036 and $1037{\AA}$ with atomic hydrogen. Raman O VI 6825 and 7082 features are characterized by double-peaked profiles indicative of an accretion flow with a characteristic speed ~ 30km/s, whereas the Raman C II features exhibit a single Gaussian profile with FWHM ${\sim}10{\AA}$. Monte Carlo simulations for Raman O VI and C II are performed by assuming that the emission nebula around the WD consists of the inner O VI disk with a representative scale of 1 AU and the outer part with C II sphere. The best fit for Raman profiles is obtained with an asymmetric matter distribution of the O VI disk, the mass loss rate of the cool companion ${\dot{M}}{\sim}2{\times}10^{-6}M_{{\odot}/yr}$ and the wind terminal velocity v~10 km/s. We also find O VI doublet at 3811 and $3834{\AA}$, which are blended with other emission lines. Our profile decomposition shows that the O VI ${\lambda}{\lambda}$ 3811, 3834 doublet have a single Gaussian profile with a width ~ 25 km/s. A comparison of the restored fluxes of C II ${\lambda}{\lambda}$ 1036 and 1037 from Raman C II features with the observed C II ${\lambda}1335$ leads to an estimate of a lower bound of N(CII) > $9.87{\times}10^{13}cm^{-2}$ toward RR Tel, which appears consistent with the presumed distance D ~ 2.6 kpc.

  • PDF

재순환수 주입에 따른 매립장 함수율 변화특성 분석 (Analysis of the Characteristics of the Change in the Moisture Rate of Landfill with Recirculation Water Injection)

  • 김영규;최원영;천승규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권5호
    • /
    • pp.39-48
    • /
    • 2021
  • Analysis of the change in water content and distribution was conducted according to the supply of recirculation water to a landfill. An excavation sample analysis showed that the recirculation water injection zone had water content 8.8% point higher than that of the non-injection zone, after 8 months of operation. And due to the influence of recirculation water supply by vertical wells in injection zones, the water content increases along with depth more clearly than non-injection zone. According to an electrical specific-resistivity survey after 13 months of operation, the water content got higher towards the bottom of the landfill. The water transmission coefficient is 8.72×10-4 cm/sec for injection zones and 3.36×10-5 cm/sec for the intermediate cover layer; analysis shows that the intermediate cover layer may affect the penetration velocity of water supplied by the horizontal injection tube. For the scientific design and operation of re-injection facilities, it was deemed necessary to follow-up research on the residence time and behavior of re-injection water considering the ratio of recirculation water supply in horizontal and vertical tubes, and pitcher coefficient of intermediate and waste layers.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

플루오라이트 구조 강유전체 박막의 분극 반전 동역학 리뷰 (A Brief Review on Polarization Switching Kinetics in Fluorite-structured Ferroelectrics)

  • 김세현;박근형;이은빈;유근택;이동현;양건;박주용;박민혁
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.330-342
    • /
    • 2020
  • Since the original report on ferroelectricity in Si-doped HfO2 in 2011, fluorite-structured ferroelectrics have attracted increasing interest due to their scalability, established deposition techniques including atomic layer deposition, and compatibility with the complementary-metal-oxide-semiconductor technology. Especially, the emerging fluorite-structured ferroelectrics are considered promising for the next-generation semiconductor devices such as storage class memories, memory-logic hybrid devices, and neuromorphic computing devices. For achieving the practical semiconductor devices, understanding polarization switching kinetics in fluorite-structured ferroelectrics is an urgent task. To understand the polarization switching kinetics and domain dynamics in this emerging ferroelectric materials, various classical models such as Kolmogorov-Avrami-Ishibashi model, nucleation limited switching model, inhomogeneous field mechanism model, and Du-Chen model have been applied to the fluorite-structured ferroelectrics. However, the polarization switching kinetics of fluorite-structured ferroelectrics are reported to be strongly affected by various nonideal factors such as nanoscale polymorphism, strong effect of defects such as oxygen vacancies and residual impurities, and polycrystallinity with a weak texture. Moreover, some important parameters for polarization switching kinetics and domain dynamics including activation field, domain wall velocity, and switching time distribution have been reported quantitatively different from conventional ferroelectrics such as perovskite-structured ferroelectrics. In this focused review, therefore, the polarization switching kinetics of fluorite-structured ferroelectrics are comprehensively reviewed based on the available literature.

저서 다모류군집을 이용한 어류가두리 양식장의 환경영향범위 평가 (Environmental Impact Assessment of Fish Cage Farms Using Benthic Polychaete Communities)

  • 박소현;김선영;심보람;정우성;박세진;홍석진;이원찬;윤상필
    • 한국수산과학회지
    • /
    • 제55권5호
    • /
    • pp.598-611
    • /
    • 2022
  • The aim of this study was to investigate the range of influence of aquaculture activities in fish cage farms located on the southern coast of Korea (Farm A and B in Hadong, Farm C in Tongyoung, and Farm D in Geoje) by analyzing the distribution and characteristics of polychaete communities. Farm A and B showed remarkably high aquaculture intensity, and as a result, the polychaete communities near the farms were heavily polluted. However, there was a difference in the polychaete communities at a distance greater than 30 m from farm A and B, which may be due to topographical differences. The effect of the aquaculture activity of Farm C was only observed below the farm, however, the influence of aquaculture activities Farm D was maintained over a relatively long distance. According to the results of this study, the effect of the fish cage culture was mainly influenced by factors related to the production of fish, such as the stocking amount and the amount of food supply. Moreover, the distance at which the influence of aquaculture activity was observed was found to be closely related to the topographical characteristics and flow velocity around the farms.

다구찌실험계획법을 활용한 기중차단기의 메커니즘 최적화 (An Optimal Design of a Driving Mechanism for Air Circuit Breaker using Taguchi Design of Experiments)

  • 박우진;박용익;안길영;조해용
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.78-84
    • /
    • 2022
  • An air circuit breaker (ACB) is an electrical protection device that interrupts abnormal fault currents that result from overloads or short circuits in a low-voltage power distribution line. The ACB consists of a main circuit part for current flow, mechanism part for the opening and closing operation of movable conductors, and arc-extinguishing part for arc extinction during the breaking operation. The driving mechanism of the ACB is a spring energy charging type. The faster the contact opening speed of the movable conductors during the opening process, the better the breaking performance. However, there is a disadvantage that the durability of mechanism decreases in inverse proportion to the use of a spring capable of accumulating high energy to configure the breaking speed faster. Therefore, to simultaneously satisfy the breaking performance and mechanical endurance of the ACB, its driving mechanism must be optimized. In this study, a dynamic model of the ACB was developed using the MDO(Mechanism Dynamics Option) module of CREO, which is widely used in multibody dynamics analysis. To improve the opening velocity, the Taguchi design method was applied to optimize the design parameters of an ACB with many linkages. In addition, to evaluate the improvement in the operating characteristics, the simulation and experimental results were compared with the MDO model and improved prototype sample, respectively.

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.

필드 부하를 활용한 정유압기계식 변속시스템의 기어 해석 (Gear Analysis of Hydro-Mechanical Transmission System using Field Load Data)

  • 김정길;이동근;오주영;남주석
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.111-120
    • /
    • 2021
  • A tractor is an agricultural machine that performs farm work, such as cultivation, soil preparation, loading, bailing, and transporting, through attached working implements. Farm work must be carried out on time per the growing season of crops. As a result, the reliability of a tractor's transmission is vital. Ideally, the transmission's design should reflect the actual load during agricultural work; however, configuring such a measurement system is time- and cost-intensive. The design and analysis of a transmission are, therefore, mainly performed by empirical methods. In this study, a tractor with a measurement system was used to measure the actual working load in the field. Its hydro-mechanical transmission was then analyzed using the measured load. It was found that the velocity factor, load distribution factor, lubrication factor, roughness factor, relative notch sensitivity factor, and life factor affect the gear strength of the transmission. Also, loading conditions have a significant influence on the reliability of the transmission. It is believed that transmission reliability can be enhanced by analyzing the actual load on the transmission, as performed in this study.

입자추적 유동해석을 이용한 초음파분무화학기상증착 균일도 예측 연구 (Uniformity Prediction of Mist-CVD Ga2O3 Thin Film using Particle Tracking Methodology)

  • 하주환;박소담;이학지;신석윤;변창우
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.101-104
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity compared to ALD and PECVD methods. It is capable of reacting to the substrate by misting an aqueous solution using ultrasonic waves under vacuum-free conditions of atmospheric pressure. In particular, Ga2O3 is regarded as advanced power semiconductor material because of its high quality of transmittance, and excellent electrical conductivity through N-type doping. In this study, Computational Fluid Dynamics were used to predict the uniformity of the thin film on a large-area substrate. And also the deposition pattern and uniformity were analyzed using the flow velocity and particle tracking method. The uniformity was confirmed by quantifying the deposition cross section with an FIB-SEM, and the consistency of the uniformity prediction was secured through the analysis of the CFD distribution. With the analysis and experimental results, the match rate of deposition area was 80.14% and the match rate of deposition thickness was 55.32%. As the experimental and analysis results were consistent, it was confirmed that it is possible to predict the deposition thickness uniformity of Mist-CVD.

무릎스쿼트 운동과 스쿼트 운동 자세에 따른 뇌졸중 환자의 균형 비교 연구 (A Study on the Balance of Stroke Patients According to Kneeling Squat Exercise and Standing Squat Exercise Positions)

  • 고관혁;김병조
    • 대한통합의학회지
    • /
    • 제10권4호
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose : The purpose of this research is to propose a more efficient exercising method by measuring and comparing the movement of center of pressure (COP) while hemiplegic stroke patients perform kneeling squat exercise and squat exercise. Methods : 17 hemiplegic stroke patients were instructed to perform kneeling squat exercises and squat exercises, and the research was designed as a cross-over study. For data collection, a pressure distribution measurement platform (PDM) was used to measure the movement area, length, speed, and distance from the center of the X-axis of center of pressure. The data was then analyzed through a paired t-test. Results : Kneeling squat exercises have been found to have a significantly smaller center of pressure movement area compared to that of squat exercise(p<.001), and the center of pressure movement length of kneeing squat exercise has also been found to be relatively shorter (p<.001). Moreover, kneeling squat exercises have been found to have a significantly slower center of pressure movement speed than squat exercise (p<.001), and kneeing squat exercise center of pressure movement distance from the center of the X-axis has been found to be significantly small (p<.001). Conclusion : Kneeling squat exercises have significantly decreased amounts of center of pressure movement area, distance, and speed compared to squat exercises. Also, the center of pressure movement distance from the center of the X-axis was relatively closer. This result seems to derive from patients performing their motions with wide base surfaces while being refrained from using unstable ankle joints during kneeing squat exercise. Therefore, it can be concluded that kneeing squat exercises show relatively balanced center of pressure movements between the paralyzed and non-paralyzed sides because kneeling squats show smaller shakes in the center of pressure.