• Title/Summary/Keyword: Vehicular Security System

Search Result 39, Processing Time 0.022 seconds

Security Verification of a Communication Authentication Protocol in Vehicular Security System (자동차 보안시스템에서 통신 인증프로토콜의 보안성 검증)

  • Han, Myoungseok;Bae, WooSik
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.229-234
    • /
    • 2014
  • Vehicular electronic communication system has continued to develop in favor of high performance and user convenience with the evolution of auto industry. Yet, due to the nature of communication system, concerns over intruder attacks in transmission sections have been raised with a need for safe and secure communication being valued. Any successful intruder attacks on vehicular operation and control systems as well as on visual equipment could result in serious safety and privacy problems. Thus, research has focused on hardware-based security and secure communication protocols. This paper proposed a safe and secure vehicular communication protocol, used the formal verification tool, Casper/FDR to test the security of the proposed protocol against different types of intruder attacks, and verified that the proposed protocol was secure and ended without problems.

Machine-to-Machine (M2M) Communications in Vehicular Networks

  • Booysen, M.J.;Gilmore, J.S.;Zeadally, S.;Rooyen, G.J. Van
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.529-546
    • /
    • 2012
  • To address the need for autonomous control of remote and distributed mobile systems, Machine-to-Machine (M2M) communications are rapidly gaining attention from both academia and industry. M2M communications have recently been deployed in smart grid, home networking, health care, and vehicular networking environments. This paper focuses on M2M communications in the vehicular networking context and investigates areas where M2M principles can improve vehicular networking. Since connected vehicles are essentially a network of machines that are communicating, preferably autonomously, vehicular networks can benefit a lot from M2M communications support. The M2M paradigm enhances vehicular networking by supporting large-scale deployment of devices, cross-platform networking, autonomous monitoring and control, visualization of the system and measurements, and security. We also present some of the challenges that still need to be addressed to fully enable M2M support in the vehicular networking environment. Of these, component standardization and data security management are considered to be the most significant challenges.

A Survey on Security Schemes based on Conditional Privacy-Preserving in Vehicular Ad Hoc Networks

  • Al-Mekhlafi, Zeyad Ghaleb;Mohammed, Badiea Abdulkarem
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.105-110
    • /
    • 2021
  • Contact between Vehicle-to-vehicle and vehicle-to-infrastructural is becoming increasingly popular in recent years due to their crucial role in the field of intelligent transportation. Vehicular Ad-hoc networks (VANETs) security and privacy are of the highest value since a transparent wireless communication tool allows an intruder to intercept, tamper, reply and erase messages in plain text. The security of a VANET based intelligent transport system may therefore be compromised. There is a strong likelihood. Securing and maintaining message exchange in VANETs is currently the focal point of several security testing teams, as it is reflected in the number of authentication schemes. However, these systems have not fulfilled all aspects of security and privacy criteria. This study is an attempt to provide a detailed history of VANETs and their components; different kinds of attacks and all protection and privacy criteria for VANETs. This paper contributed to the existing literature by systematically analyzes and compares existing authentication and confidentiality systems based on all security needs, the cost of information and communication as well as the level of resistance to different types of attacks. This paper may be used as a guide and reference for any new VANET protection and privacy technologies in the design and development.

Inter-device Mutual Authentication and Formal Verification in Vehicular Security System (자동차 보안시스템에서 장치간 상호인증 및 정형검증)

  • Lee, Sang-Jun;Bae, Woo-Sik
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.205-210
    • /
    • 2015
  • The auto industry has significantly evolved to the extent that much attention is paid to M2M (Machine-to-Machine) communication. In M2M communication which was first used in meteorology, environment, logistics, national defense, agriculture and stockbreeding, devices automatically communicate and operate in accordance with varying situations. M2M system is applied to vehicles, specifically to device-to-device communication inside cars, vehicle-to-vehicle communication, communication between vehicles and traffic facilities and that between vehicles and surroundings. However, communication systems are characterized by potential intruders' attacks in transmission sections, which may cause serious safety problems if vehicles' operating system, control system and engine control parts are attacked. Thus, device-to-device secure communication has been actively researched. With a view to secure communication between vehicular devices, the present study drew on hash functions and complex mathematical formulae to design a protocol, which was then tested with Casper/FDR, a tool for formal verification of protocols. In brief, the proposed protocol proved to operate safely against a range of attacks and be effective in practical application.

Verification of a Communication Method Secure against Attacks Using Convergence Hash Functions in Inter-vehicular Secure Communication (차량간 보안 통신에서 융합 해시함수를 이용하여 공격에 안전한 통신방법 검증)

  • Lee, Sang-Jun;Bae, Woo-Sik
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.297-302
    • /
    • 2015
  • The increase in applying IT to vehicles has given birth to smart cars or connected cars. As smarts cars become connected with external network systems, threats to communication security are on the rise. With simulation test results supporting such threats to Convergence security in vehicular communication, concerns are raised over relevant vulnerabilities, while an increasing number of studies on secure vehicular communication are published. Hacking attacks against vehicles are more dangerous than other types of hacking attempts because such attacks may threaten drivers' lives and cause social instability. This paper designed a Convergence security protocol for inter-vehicle and intra-vehicle communication using a hash function, nonce, public keys, time stamps and passwords. The proposed protocol was tested with a formal verification tool, Casper/FDR, and found secure and safe against external attacks.

An Efficient Anonymous Authentication Scheme with Secure Communication in Intelligent Vehicular Ad-hoc Networks

  • Zhang, Xiaojun;Mu, Liming;Zhao, Jie;Xu, Chunxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3280-3298
    • /
    • 2019
  • Vehicular ad-hoc networks (VANETs) have become increasingly significant in intelligent transportation systems, they play a great role in improving traffic safety and efficiency. In the deployment of intelligent VANETs, intelligent vehicles can efficiently exchange important or urgent traffic information and make driving decisions. Meanwhile, secure data communication and vehicle's identity privacy have been highlighted. To cope with these security issues, in this paper, we construct an efficient anonymous authentication scheme with secure communication in intelligent VANETs. Combing the ElGamal encryption technique with a modified Schnorr signature technique, the proposed scheme provides secure anonymous authentication process for encrypted message in the vehicle-to-infrastructure communication model, and achieves identity privacy, forward security, and reply attack resistance simultaneously. Moreover, except the trusted authority (TA), any outside entity cannot trace the real identity of an intelligent vehicle. The proposed scheme is designed on an identity-based system, which can remove the costs of establishing public key infrastructure (PKI) and certificates management. Compared with existing authentication schemes, the proposed scheme is much more practical in intelligent VANETs.

Design and Implementation of Certificate Revocation List Acquisition Method for Security of Vehicular Communications

  • Kim, Hyun-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.584-591
    • /
    • 2012
  • Distributing a Certificate Revocation List (CRL) quickly to all vehicles in the system requires a very large number of road side units (RSUs) to be deployed. In reality, initial deployment stage of vehicle networks would be characterized by limited infrastructure as a result in very limited vehicle to infrastructure communication. However, every vehicle wants the most recent CRLs to protect itself from malicious users and malfunctioning equipments, as well as to increase the overall security of the vehicle networks. To address this challenge, we design and implement a nomadic device based CRL acquisition method using nomadic device's communication capability with cellular networks. When a vehicle could not directly communicate with nearby RSUs, the nomadic device acts as a security mediator to perform vehicle's security functions continuously through cellular networks. Therefore, even if RSUs are not deployed or sparsely deployed, vehicle's security threats could be minimized by receiving the most recent CRLs in a reasonable time.

A Regional Certificate Revocation List Distribution Method based on the Local Vehicle Location Registration for Vehicular Communications

  • Hong, Hwi-Seung;Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.91-99
    • /
    • 2016
  • A certificate revocation list(CRL) should be distributed quickly to all the vehicles in the network to protect them from malicious users and malfunctioning equipments as well as to increase the overall security and safety of vehicular networks. However, a major challenge is how to distribute CRLs efficiently. In this paper, we propose a novel Regional CRL distribution method based on the vehicle location registration locally to manage vehicle mobility. The method makes Regional CRLs based on the vehicles' location and distributes them, which can reduce CRL size and distribution time efficiently. According to the simulation results, the proposed method's signaling performance of vehicle's registration is enhanced from 22% to 37% compared to the existing Regional CRL distribution method. It's CRL distribution time is also decreased from 37% to 67% compared to the existing Full CRL distribution method.

Block-VN: A Distributed Blockchain Based Vehicular Network Architecture in Smart City

  • Sharma, Pradip Kumar;Moon, Seo Yeon;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.184-195
    • /
    • 2017
  • In recent decades, the ad hoc network for vehicles has been a core network technology to provide comfort and security to drivers in vehicle environments. However, emerging applications and services require major changes in underlying network models and computing that require new road network planning. Meanwhile, blockchain widely known as one of the disruptive technologies has emerged in recent years, is experiencing rapid development and has the potential to revolutionize intelligent transport systems. Blockchain can be used to build an intelligent, secure, distributed and autonomous transport system. It allows better utilization of the infrastructure and resources of intelligent transport systems, particularly effective for crowdsourcing technology. In this paper, we proposes a vehicle network architecture based on blockchain in the smart city (Block-VN). Block-VN is a reliable and secure architecture that operates in a distributed way to build the new distributed transport management system. We are considering a new network system of vehicles, Block-VN, above them. In addition, we examine how the network of vehicles evolves with paradigms focused on networking and vehicular information. Finally, we discuss service scenarios and design principles for Block-VN.

Secure and Privacy Preserving Protocol for Traffic Violation Reporting in Vehicular Cloud Environment

  • Nkenyereye, Lewis;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1159-1165
    • /
    • 2016
  • Traffic violations such as moving while the traffic lights are red have come from a simple omission to a premeditated act. The traffic control center cannot timely monitor all the cameras installed on the roads to trace and pursue those traffic violators. Modern vehicles are equipped and controlled by several sensors in order to support monitoring and reporting those kind of behaviors which some time end up in severe causalities. However, such applications within the vehicle environment need to provide security guaranties. In this paper, we address the limitation of previous work and present a secure and privacy preserving protocol for traffic violation reporting system in vehicular cloud environment which enables the vehicles to report the traffic violators, thus the roadside clouds collect those information which can be used as evidence to pursue the traffic violators. Particularly, we provide the unlinkability security property within the proposed protocol which also offers lightweight computational overhead compared to previous protocol. We consider the concept of conditional privacy preserving authentication without pairing operations to provide security and privacy for the reporting vehicles.