• Title/Summary/Keyword: Vehicle sensor

Search Result 1,328, Processing Time 0.025 seconds

The Development of Obstacle Avoidance Algorithm for Unmanned Vehicle Using Ultrasonic Sensor

  • Yu, Whan-Sin;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.408-412
    • /
    • 2003
  • Obstacle avoidance algorithm is very important on an unmanned vehicle. Therefore, in this research, we propose a algorithm of obstacle avoidance and we can prove through vehicle test and sensor experiments. Obstacle avoidance must be divided into two parts: the first part includes the longitudinal control for acceleration and deceleration and the second part is the lateral control for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are confirmed through vehicle tests.

  • PDF

Field Test and Evaluation for a Wireless Vehicle Detector with Two Anisotropic Magneto-Resistive Sensors (2개의 AMR 센서를 이용한 무선 차량 검지기에 대한 현장시험 및 평가)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.600-605
    • /
    • 2011
  • This paper shows field test and evaluation results for a wireless vehicle detector with anisotropic magneto-resistive (AMR) sensors. The detector consists of two AMR sensors and mechanical and electronic apparatuses. The AMR sensor senses disturbance of the earth magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. In this paper, vehicle speeds are calculated by using two AMR sensors fixed on a board, with constant distance. To test and evaluate the accuracy of the detector in real traffic situations, the detector was installed on a local highway and vehicle speeds and volumes were measured both in a free running and a highly congested traffic. The measurements from the detector are compared with the reference measurements obtained from a traffic camera with the Mean Absolute Percentage Errors (MAPE), which has proved the usefulness of the detector in the field.

New Vehicle Verification Scheme for Blind Spot Area Based on Imaging Sensor System

  • Hong, Gwang-Soo;Lee, Jong-Hyeok;Lee, Young-Woon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Ubiquitous computing is a novel paradigm that is rapidly gaining in the scenario of wireless communications and telecommunications for realizing smart world. As rapid development of sensor technology, smart sensor system becomes more popular in automobile or vehicle. In this study, a new vehicle detection mechanism in real-time for blind spot area is proposed based on imaging sensors. To determine the position of other vehicles on the road is important for operation of driver assistance systems (DASs) to increase driving safety. As the result, blind spot detection of vehicles is addressed using an automobile detection algorithm for blind spots. The proposed vehicle verification utilizes the height and angle of a rear-looking vehicle mounted camera. Candidate vehicle information is extracted using adaptive shadow detection based on brightness values of an image of a vehicle area. The vehicle is verified using a training set with Haar-like features of candidate vehicles. Using these processes, moving vehicles can be detected in blind spots. The detection ratio of true vehicles was 91.1% in blind spots based on various experimental results.

Unmanned Vehicle System Configuration using All Terrain Vehicle

  • Moon, Hee-Chang;Park, Eun-Young;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1550-1554
    • /
    • 2004
  • This paper deals with an unmanned vehicle system configuration using all terrain vehicle. Many research institutes and university study and develop unmanned vehicle system and control algorithm. Now a day, they try to apply unmanned vehicle to use military device and explore space and deep sea. These unmanned vehicles can help us to work is difficult task and approach. In the previous research of unmanned vehicle in our lab, we used 1/10 scale radio control vehicle and composed the unmanned vehicle system using ultrasonic sensors, CCD camera and kinds of sensor for vehicle's motion control. We designed lane detecting algorithm using vision system and obstacle detecting and avoidance algorithm using ultrasonic sensor and infrared ray sensor. As the system is increased, it is hard to compose the system on the 1/10 scale RC car. So we have to choose a new vehicle is bigger than 1/10 scale RC car but it is smaller than real size vehicle. ATV(all terrain vehicle) and real size vehicle have similar structure and its size is smaller. In this research, we make unmanned vehicle using ATV and explain control theory of each component

  • PDF

Development of a Vehicle Positioning Algorithm Using In-vehicle Sensors and Single Photo Resection and its Performance Evaluation (차량 내장 센서와 단영상 후방 교차법을 이용한 차량 위치 결정 알고리즘 개발 및 성능 평가)

  • Kim, Ho Jun;Lee, Im Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2017
  • For the efficient and stable operation of autonomous vehicles or advanced driver assistance systems being actively studied nowadays, it is important to determine the positions of the vehicle accurately and economically. A satellite based navigation system is mainly used for positioning, but it has a limitation in signal blockage areas. To overcome this limitation, sensor fusion methods including additional sensors such as an inertial navigation system have been mainly proposed but the high sensor cost has been a problem. In this work, we develop a vehicle position estimation algorithm using in-vehicle sensors and a low-cost imaging sensor without any expensive additional sensor. We determine the vehicle positions using the velocity and yaw-rate of a car from the in-vehicle sensors and the position and attitude of the camera based on the single photo resection process. For the evaluation, we built a prototype system, acquired test data using the system, and estimated the trajectory. The proposed algorithm shows the accuracy of about 40% higher than an in-vehicle sensor only method.

Development of Angular Rate Sensor for an Electronic Stability Program (전자식 주행안전 장치를 위한 각속도 센서 개발)

  • Kim, Byeong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.83-90
    • /
    • 2007
  • The vehicle dynamic control system needs to detect the yaw rate of vehicle and a yaw rate sensor is required as a central component. Therefore, A sensor on the basic of the "tuning fork method" for automotive controls is being developed. The sensor was fabricated by the surface micro machining process to miniaturize its size. The sensor output offset is ${\pm}0.37^{\circ}/sec$ in the room temperature. The resonance frequency of the fabricated yaw rate sensor is measured to 5.29kHz for the drive mode. Tests of the sensor demonstrate that its performance is equivalent to that required for implementation of a yaw control system. Vehicle handling and safety are substantially improved using the sensor to implement yaw control.

Motion Sensor Fault Detection and Failsafe Logic for Vehic1e Stability Control Systems (VSCs)

  • Yi, Kyongsu;Min, Kyongchan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1961-1968
    • /
    • 2004
  • The design of a reliable and failsafe control system requires that sensor failures be detected and identified within acceptable time limit so that system malfunction can be prevented. This paper presents a model-based approach to sensor fault detection with applications to vehicle stability control systems. The effectiveness of the proposed method is illustrated through test data-based evaluation. Vehicle test data-based evaluation results show that the proposed fault management scheme can be used for the design of a failsafe VSCs.

Development of Control Simulator for Integrated Sensor Module of Vehicle (차량용 통합 센서 모듈 제어를 위한 시뮬레이터 개발)

  • Jeon, Jin-Young;Park, Jeong-Yeon;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • The integrated sensor module of vehicle combines the functions of rain sensor, auto defog sensor, and sun angle sensor into a single module. These functions originally were applied to work separatively. This integrated sensor module should meet the each performance which appears from the individual modules up to the same level or higher. Therefore, it is important to verify the stability and the accuracy considering the characteristics of the integrated sensor module according to various situations. For the verification, we need to use the actual data of integrated sensor module measured but, a lot of time and money is needed to collect data measured under various circumstances when operating. Thus, through the development of this simulator for the control of the integrated sensor module, we can use it effectively for the initial verification of integrated sensor module by implementing the various situations. In this paper, the simulator for controlling the integrated sensor module which combines vision-based rain sensor, auto defog sensor, auto light sensor, and sun angle sensor has been developed.

A Vehicle Speed Detector Using AMR Sensors (AMR 센서를 이용한 차량 속도 검지기)

  • Kang, Moon-Ho;Park, Yoon-Chang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1398-1404
    • /
    • 2009
  • This paper proposes a vehicle speed detector with anisotropic magnetoresistive (AMR) sensors and addresses experimental results to show the performance of the detector. The detector consists of two AMR sensors and mechanical and electronic apparatuses. The AMR sensor senses disturbance of the earth magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. In this paper, vehicle speeds are calculated by using two AMR sensors built on a board. The speed of a vehicle is calculated by dividing the known distance between the two sensors with the time difference between two output signals from each sensor, captured sequentially while the vehicle is driving over the sensors. Some field tests have been carried to show the performance of the proposed detector and its usefulness.

Design of Gateway for In-vehicle Sensor Network

  • Kim, Tae-Hwan;Lee, Seung-Il;Hong, Won-Kee
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.73-76
    • /
    • 2005
  • The advanced information and communication technology gives vehicles another role of the third digital space, merging a physical space with a virtual space in a ubiquitous society. In the ubiquitous environment, the vehicle becomes a sensor node, which has a computing and communication capability in the digital space of wired and wireless network. An intelligent vehicle information system with a remote control and diagnosis is one of the future vehicle systems that we can expect in the ubiquitous environment. However, for the intelligent vehicle system, many issues such as vehicle mobility, in-vehicle communication, service platform and network convergence should be resolved. In this paper, an in-vehicle gateway is presented for an intelligent vehicle information system to make an access to heterogeneous networks. It gives an access to the server systems on the internet via CDMA-based hierarchical module architecture. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixec place, 707ms at rural area and 910ms at urban area.

  • PDF