• Title/Summary/Keyword: Vehicle of Van Type

Search Result 14, Processing Time 0.021 seconds

Analytical Model in Pedestrian Accident by Van Type Vehicle (Van 형 차량의 보행자 충돌 사고 해석 모델)

  • Ahn, Seung-Mo;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.115-120
    • /
    • 2008
  • The fatalities of pedestrian accounted for about 40.0% of all fatalities in Korea (2005 year). In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables, such as vehicular frontal shape, vehicular impact speed, the offset of impact point, the height of pedestrian, and road condition. The trajectory of pedestrian after collision can be influenced by vehicular frontal shape classified into sedan type, box type, SUV type and van type. Many studies have been done about pedestrian accident with passenger car model and bus model for simple factors. But the study of pedestrian accident by van type vehicle was much insufficient, and even that the influence of multiple factors such as the offset of impact point was neglected. In this paper, a series of pedestrian kinetic simulation were conducted to inspect relationship between throw distance and multiple factors with using PC-CRASH s/w, a kinetic analysis program for a traffic accident for van type. By based on the simulation results, multi-variate regression was conducted, and regression equation was presented.

  • PDF

Accident Models of 4-Legged Signalized Intersections by Vehicle Type in the Case of Cheongju (4지 신호교차로 차종별 사고모형 -청주시를 사례로-)

  • Park, Byung-Ho;Park, Gil-Soo;In, Byung-Chul
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2008
  • This study deals with the accident models by vehicle type. The goal is to develop the accident models by vehicle type using the data of 143 4-legged signalized intersections in Cheongju. In pursuing the above, this study gives the particular attentions to explaining the relationships between the values of EPDO(equivalent property damage only) and the traffic and geometric elements. The main results analyzed are the followings. First, 6 negative binomial models are developed, which are all significant at the 90% confidence level. Second, the values of ${\rho}^2$ by vehicle type are 0.14307(auto), 0.35556(large van), 0.21684(small van), 0.205152(motocycle), 0.32338(light-duty truck) and 0.29046(heavy-duty truck), that are all analyzed to be statistically significant. Finally, the common variable included in all models is ADT(average daily traffic), and the specific variable(SV) of auto is analyzed to be the sum of lane width of main road, SV of large van is the average yellow time, and SV of small van is the difference in the number of lane between main and minor road.

  • PDF

An experimental study on the wake structure behind a van type vehicle (Van형 자동차의 후류구조에 대한 실험적 해석(와류 형성을 중심으로))

  • 성봉주;장병희
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 1988
  • The wake structure behind a van type vehicle was studied experimentally with a 5-hole yawhead probe. Through an effective calibration method of the 5-hole yawhead probe, the flow properties such as velocity vector, total pressure and static pressure were obtained on two cross sections within the wake. These results combined with the surface flow visualization performed in the previous study, yielded some information about the wake structure. When the model was placed in a stream with zero yaw angle, two counter rotating vortices were observed behind the model which pull down the surface flow on each side of the model. With increasing the yaw angle, the surface flow on the windward side changed to divide the flow in two directions, one flows upward on the upper part and the other flows downward on the lower part of the windward side. Hence a new weak vortex was created on the upper windward side, which resulted 3 vortices within the wake. The size and the strength of the vortices increased with yaw angle.

  • PDF

Injury Analysis of a 12-passenger Van Rollover Accident (12인승 밴 전복사고의 상해 분석)

  • Kim, S.C.;Choi, H.Y.;Kim, B.W.;Park, G.J.;An, S.M.;Lee, K.H.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • The fatality of rollover accidents in motor vehicle crashes is high despite their low incidence. Through the investigation of a 12-passenger van rollover accident in which 10 passengers were involved, we intend to analyze the correlation between the severity of the injury and the position of the occupants. We collected accident information from medical records, interviews, photo-images of the damaged van, field surveys, and the results of the Korean New Car Assessment Program (KNCAP). Based on the occupants' position, we classified injury sites and estimated injury severity. Passenger injury severity was evaluated by trauma score calculation. The initiation type of the rollover accident was passenger side 'fall-over' and the Collision Deformation Classification (CDC) code for the damaged van was 00TDZO3. The crash of the van involved 10 passengers, with an average age of $16.3{\pm}4.2years$. Few of the occupants had fastened seat belts at the time of the incident, and there was no airbag installed. One patient sustained severe liver injury and another was diagnosed with a fracture of the right humerus. The most common injuries were at the upper extremities and the neck. The average of Injury Severity Score (ISS) was $4.8{\pm}5.9$, and the average ISS of right-seated, mid-seated and left-seated occupants was $7.5{\pm}9.3$, $1.5{\pm}0.7$, and $3.3{\pm}2.1$ respectively (p>0.05). In the rollover (to-passenger side) accident of occupant unfastened, the average ISS of right-seated occupants (near side) was higher, but there was no statistically significant difference.

Methodology for Environmental Adaptation Vehicle Horn Improvements (주변 환경 순응형 자동차 경적 소음 개선 방법)

  • Kim, In Su;Yang, Choong Heon
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2015
  • PURPOSES : While driving, drivers are usually limited in communicating with others except for using the horn. Excessive use of the horn may cause noise pollution, quarrels between drivers and pedestrians, damage, etc. This study developed a methodology for environmental adaptation and improvements of vehicle horns. METHODS: In this study, we performed a literature review of previous studies and related technologies regarding the overuse and damage of the horn. The proposed methodology employed the paired comparison method, as well as the semantic differential method. These methods can consider various vehicle horns, such as the Sport Utility Vehicle(SUV) Horn, Van Horn, and Buzzer. In addition, we conducted a factor analysis in order to provide a direction for improvement of future horns. This research provides a means of complimenting existing intellectual property related to vehicle horns. RESULTS: As a result, the most preferred of the selected horns were the Buzzer at 86.7%. In addition, based on the factor analysis, the horns could be classified into pleasantness and comfort factors. The results indicate a positive reaction for various vehicle horns. The horn type and size of the process control have been properly developed considering the position of the vehicle and the surrounding noise measurements. CONCLUSIONS : Based on the proposed methodology, public and private sectors can use fundamental data for reasonable traffic-noise control policies.

A Study on the Analysis Method of Emission Intensity of GHGs utilizing Real World Vehicle Driving Information (실차 운행정보를 활용한 온실가스 배출지표 분석 방법에 대한 연구)

  • Kim, Yong Beom;Kim, Pil Su;Han, Yong Hee;Lee, Heon Ju;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.19-29
    • /
    • 2016
  • In this study, the emission intensity calculation method of GHGs was developed by considering the characteristics of the models and time series. The telematics device was installed on the car (OBD-II) to collect information on the operation conditions from each sample vehicle of public authorities. Based on emission intensity of GHGs, it presented a methodology of quantitative comparison of GHGs emission by vehicles. Collected driving information of vehicle was used for operating characteristics analysis of the target vehicle, and it was confirmed different operating characteristics through comparison of the results and previous study. GHGs emission intensity were analyzed considering characteristics of vehicle type by passenger car, van, cargo, and considering characteristics of the time series by summer, winter, and intermediate. From the analysis result, it was calculated GHGs emission intensity based on mileage ($g\;CO_2\;eq./km$) and operating time ($g\;CO_2\;eq./sec$).

Vibration Test of Truck with Air Suspension & Development of Korean Type Air Suspension (공기 현가장치를 장착한 화물차량의 진동측정 및 한국형 공기 현가장치 모듈 개발)

  • Woo, Jun-Seong;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Tae-Won;Kwon, Soon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.332-339
    • /
    • 2006
  • A leaf spring suspension has been widely used since it can carry big load and simplicity. But one major drawback is the poor ride performance because of the friction in the system and the high stiffness coefficient. To overcome these, air spring suspension can be used. The air spring suspension system can improve the ride of the heavy vehicle significantly and also it can adjust the height to the loading and unloading. A truck with the leaf suspension system is modified with the air suspension system and the performance of the vehicle is compared using the suggested method. The existing leaf suspension can be replaced with the air suspension system to improve the performance.

  • PDF

Accident Models of Rotary by Vehicle Type (차량유형별 로터리 사고모형)

  • Han, Su-San;Park, Byeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.67-74
    • /
    • 2011
  • This study deals with the traffic accidents data from the Korean rotaries (circular intersections) to verify their characteristics affected by different vehicle types. This paper categorized the data into three groups based on vehicle types, and developed a set of accident models. The paper proposed two ZIP models and one negative binomial model through a statistical analysis for three vehicle types: automobile, truck and van, and others. The differences among those models were then statistically compared.

An Experimental Study of Tire-Road Friction Coefficient by Transient Brake Time (실차 실험을 통한 제동순시간에 의한 타이어-노면마찰계수에 관한 연구)

  • Han, Chang-Pyoung;Park, Kyoung-Suk;Choi, Myung-Jin;Lee, Jong-Sang;Shin, Un-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.106-111
    • /
    • 2007
  • In this paper, the transient brake time was studied on the van type vehicle with accelerometer. Experiments were carried out on the asphalt(new and polished), unpacked road(earth and gravel) and on wet or dry road conditions. The transient brake time is not effected bzy the vehicle speed. The transient brake time is about 0.41$\sim$0.43second on the asphalt road surface and the error range is within 0.1$\sim$0.16second. For the asphalt road condition, the transient brake time is not effected by both new asphalt road surface and the polished asphalt road surface. With compared by dry and wet road surface condition, the transient brake time of wet condition is longer than dry road condition and compared with unpacked road condition and packed road condition, unpacked road condition is shorter than packed road condition. It is considered that the transient brake time is effected by the road surface fraction coefficient. In other words, the transients brake time increases as friction coefficient decreases.

Characteristics of the Emissions and Concentrations of Air Pollutants with Change in Traffic Volume during the Beach Opening Period in Busan (부산지역 해수욕장 개장시 교통량 변화에 따른 대기오염물질 배출량 및 농도 특성 분석)

  • Seo, Woo-Mi;Shon, Zang-Ho;Song, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1149-1162
    • /
    • 2012
  • The impact of a considerable increase in traffic volume on the emission and concentrations of air pollutants was investigated at three beaches (Haeundae (HB), Gwanganri (GB), and Songjeong (SB)) in Busan during beach opening period (BOP) in 2011. During the BOP, passenger car was the major vehicle type, followed by taxi, and van. CO was the major contributor of total air pollutant emissions followed by NOx, VOC, and $PM_{10}$. For the temporal variation of the emission of air pollutants during the BOP, it was generally the highest in the afternoon followed by the evening and morning, except for SB. For the spatial variation of their emission, it was the highest at GB followed by SB and HB. The emissions of air pollutants during the BOP were generally higher than those during the Non-BOP, except for HB. In contrast, the significant impact of the traffic volume increase on the concentrations of air pollutants at monitoring sites near the three beaches during the BOP were not found compared to the Non-BOP due to the significant distances between monitoring sites of air pollutants and monitoring sites of traffic volume at the beaches.