• Title/Summary/Keyword: Vehicle maintenance

Search Result 553, Processing Time 0.031 seconds

Video Road Vehicle Detection and Tracking based on OpenCV

  • Hou, Wei;Wu, Zhenzhen;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.226-233
    • /
    • 2022
  • Video surveillance is widely used in security surveillance, military navigation, intelligent transportation, etc. Its main research fields are pattern recognition, computer vision and artificial intelligence. This article uses OpenCV to detect and track vehicles, and monitors by establishing an adaptive model on a stationary background. Compared with traditional vehicle detection, it not only has the advantages of low price, convenient installation and maintenance, and wide monitoring range, but also can be used on the road. The intelligent analysis and processing of the scene image using CAMSHIFT tracking algorithm can collect all kinds of traffic flow parameters (including the number of vehicles in a period of time) and the specific position of vehicles at the same time, so as to solve the vehicle offset. It is reliable in operation and has high practical value.

A Study on the Life Cycle Cost Evaluation of the Conventional Auxiliary Power Unit for 8200 Series Electric Locomotive (8200호대 전기기관차용 기존품 보조전원장치의 수명주기비용 평가에 관한 연구)

  • Lee, Kye-Seung;Kim, Wan-il;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.331-336
    • /
    • 2018
  • In this paper, the life cycle cost of the auxiliary power unit in the conventional 8200 series electric locomotive is evaluated and an effective life cycle cost reduction method is sought. For this, a life cycle cost evaluation model was proposed using IEC 60300-3-3 standard. As a result of analysis, material cost which accounted for a large percentage of preventive maintenance cost, accounted for 64% of total cost, and breakdown maintenance cost was as high as 27%. Except for the cost of preventive maintenance, the breakdown maintenance cost ratio was the highest. In order to reduce the LCC of the auxiliary power unit(APU) of the 8200 series in the future, it is necessary to reduce the material cost in case of development and to secure the high reliability according to the parts manufacturing so as to minimize the maintenance cost.

A study of the railroad vehicles cycle and method (철도차량 검수주기 및 방법에 관한 연구)

  • Yu, Yang-Ha
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.158-166
    • /
    • 2007
  • After constructing the high-speed railroad, KORAIL acquired advanced maintenance techniques about Rolling-stocks. Also RCM theory is applied to maintenance field like as inspection period and method. In the meantime, the development of the maintenance methode for Rolling-stock is slow when it compares to the components and system technology. For this reason KORAIL tries to build the optimal maintenance system which can lead the Rolling-stock maintenance technique. The existing vehicle except High Speed train KTX are separated to electric motor car, electric locomotive, diesel locomotive, diesel car, passenger car and freight car. The inspection period and methode for existing vehicles which mentioned above will be examined and the optimal Rolling-stock maintenance technique will be applied.

  • PDF

Evaluation of Optimal Time Between Overhaul Period of the First Driving Devices for High-Speed Railway Vehicle (고속철도차량 1차 구동장치에 대한 완전분해정비의 최적 주기 평가)

  • Jung, Jin-Tae;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8700-8706
    • /
    • 2015
  • The first driving device of the power bogies for the Korean high-speed railway vehicle consists of the traction motor (TM) and the motor reduction gears unit (MRU). Although TM and MRU are the mechanically integrated structures, their time between overhauls (TBO) have two separate intervals due to different technical requirements(i.e. TBO of MRU: $1.8{\times}10^6km$, TBO of TM: $2.5{\times}10^6km$). Therefore, to reduce the unnecessary number of preventive maintenances, it is important to evaluate the optimal TBO with a viewpoint of reliability-center maintenance towards cost-effective solution. In this study, derived from the field data in maintenance, fault tree analysis and failure rate of the subsystem considering criticality of the components are evaluated respectively. To minimize the conventional total maintenance cost, the same optimal TBO of the components is derived from genetic algorithm considering target reliability and improvement factor. In this algorithm, a chromosome which comprised of each individual is the minimum preventive maintenance interval. The fitness function of the individual in generation is acquired through the formulation using an inverse number of the total maintenance cost. Whereas the lowest common multiple method produces only a four percent reduction compared to what the existing method did, the optimal TBO of them using genetic algorithm is $2.25{\times}10^6$km, which is reduced to about 14% comparing the conventional method.

Vehicle control system base on the low power long distance communication technology(NB-IoT)

  • Kim, Sam-Taek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.6
    • /
    • pp.117-122
    • /
    • 2022
  • In this paper, we developed a vehicle control terminal using IoT and low-power long-distance communication (NB-IoT) technology. This system collects information on the location and status of a parked vehicle, and transmits the vehicle status to the vehicle owner's terminal in real time with low power to prevent vehicle theft, and in the case of a vehicle in motion, When primary information about the vehicle, such as an impact, is collected and transmitted to the server, the server analyzes the relevant data to generate secondary information on traffic congestion, road damage, and safety accidents. By sending it, you can know the exact arrival time of the vehicle at its destination. This terminal device is an IoT gateway for a vehicle and can be connected to various wired and wireless sensors inside the vehicle. In addition, the data collected from vehicle maintenance, efficient operation, and vehicles can be usefully used in the private or public sector.

Numerical Verification of B-WIM System Using Reaction Force Signals

  • Chang, Sung-Jin;Kim, Nam-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.637-647
    • /
    • 2012
  • Bridges are ones of fundamental facilities for roads which become social overhead capital facilities and they are designed to get safety in their life cycles. However as time passes, bridge can be damaged by changes of external force and traffic environments. Therefore, a bridge should be repaired and maintained for extending its life cycle. The working load on a bridge is one of the most important factors for safety, it should be calculated accurately. The most important load among working loads is live load by a vehicle. Thus, the travel characteristics and weight of vehicle can be useful for bridge maintenance if they were estimated with high reliability. In this study, a B-WIM system in which the bridge is used for a scale have been developed for measuring the vehicle loads without the vehicle stop. The vehicle loads can be estimated by the developed B-WIM system with the reaction responses from the supporting points. The algorithm of developed B-WIM system have been verified by numerical analysis.

Identification of Running Vehicle Properties by Vertical Stiffener Response of Steel Girder Bridge (강 거더교의 수직보강재 응답을 이용한 주행차량의 특성 추정)

  • Lee, Hee-Hyun;Jeon, Jun-Chang;Jung, Min-Sun;Kyung, Kab-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.86-95
    • /
    • 2012
  • The BWIM(Bridge Weigh-In-Motion) is a technology to identify vehicle properties, such as weight, speed, axle spacing and running lane, passing over a bridge by using dynamic response of bridge member. Such information will be used for assessing durability and establishing a maintenance strategy of roadway structures. In this paper, as a first step for developing BWIM system, analytical and experimental studies were conducted in order to verify whether the response of vertical stiffener in steel girder bridge can be used to identify vehicle properties running on the bridge. It was known from this study that such vehicle information could be estimated reasonably by using strain time history curve of a vertical stiffener due to running vehicles. It is because the effect of each axle-load of vehicle appears definitely in the curve. However, as the magnitude of strain of vertical stiffener is effected by running pattern of vehicles, further study is necessary to reduce error when estimating vehicle weight.

Dynamic numerical analysis of single-support modular bridge expansion joints

  • Yuan, Xinzhe;Li, Ruiqi;Wang, Jian'guo;Yuan, Wancheng
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • Severe fatigue and noise problems of modular bridge expansion joints (MBEJs) are often induced by vehicle loads. However, the dynamic characteristics of single-support MBEJs have yet to be further investigated. To better understand the vibration mechanism of single-support MBEJs under vehicle loads, a 3D finite element model of single-support MBEJ with five center beams is built. Successive vehicle loads are given out and the vertical dynamic responses of each center beams are analyzed under the successive loads. Dynamic amplification factors (DAFs) are also calculated along with increasing vehicle velocities from 20 km/h to 120 km/h with an interval 20 km/h. The research reveals the vibration mechanism of the single-support MBEJs considering coupled center beam resonance, which shows that dynamic responses of a given center beam will be influenced by the neighboring center beams due to their rebound after the vehicle wheels depart. Maximal DAF 1.5 appears at 120 km/h on the second center beam. The research results can be utilized for reference in the design, operation and maintenance of single-support MBEJs.

A Generous Cooperative Routing Protocol for Vehicle-to-Vehicle Networks

  • Li, Xiaohui;Wang, Junfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5322-5342
    • /
    • 2016
  • In vehicle-to-vehicle (V2V) networks, where selfishness degrades node activity, countermeasures for collaboration enforcement must be provided to enable application of a sage and efficient network environment. Because vehicular networks feature both high mobility and various topologies, selfish behavior judgment and establishment of a stable routing protocol become intensely challenging. In this paper, a two-phase-based generous cooperative routing protocol (called GEC) is presented for V2V networks to provide resistance to selfishness. To detect selfish behaving vehicles, a packet forwarding watchdog and an average connection rate based on the multipath weight method are used, where evidence is gathered from different watchdogs. Then, multihop relay decisions are made using a generous cooperative algorithm based on game theory. Finally, through buffering of the multiple end-to-end paths and judicious choice of optimal cooperative routes, route maintenance phase is capable of dealing with congestion and rapidly exchanging traffic. Specifically, it is proved that the GEC is theoretically subgame perfect. Simulation results show that for V2V networks with inherently selfish nodes, the proposed method isolates uncooperative vehicles and is capable of accommodating both the mobility and congestion circumstances by facilitating information dissemination and reducing end-to-end delay.

Development and Performance of Self-Propelled Vehicles for Repairing Concrete Sewage Pipes (콘크리트 하수관로 결함부 보수를 위한 자주차 개발 및 성능평가)

  • Park, Ji-Hun;Jung, Hoe-Won;Park, Hee-Woong;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.372-378
    • /
    • 2020
  • In this study, an experiment was conducted on the development and performance of self-propelled vehicles to repair defects in concrete sewage pipes. The self-propelled vehicle for a non-excavation repair for the sewage pipe defects was developed in consideration of the performance of the driving system, the feasibility of the repair unit, and the transportation of repair materials. In order to evaluate the performance of the developed self-propelled vehicle, a repair test was performed by simulating a defect at a connection between the main pipe and extruded one. The main sewage pipe was meade of concrete and its diameter was 500mm. Thereafter, watertightness performance was evaluated on the leakage at the repaired part. For watertightness performance, both ends of concrete sewage pipe and connected one was inserted by plugs, and then water was injected. The amount of leakage water measurement was 0.07L/㎡, indicating a value less than 0.2L/㎡ of the allowable leakage amount. Therefore, test results indicated that the self-propelled vehicle developed in this study exhibited excellent maintenance performance for repairing the sewage pipes.