• Title/Summary/Keyword: Vehicle fatigue

Search Result 386, Processing Time 0.024 seconds

A Study on Prediction of Fatigue Life and Shock Fracture for the Engine Base of Auxiliary Power Unit for Tracked Vehicle (보조동력장치 엔진 Base의 피로수명 예측 및 충격파손에 관한 연구)

  • Lee, Sang-Bum;Chung, Kyung-Taek;Shin, Jae-Ho;Jang, Hwan-Young;Suh, Jeong-Se
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.86-92
    • /
    • 2008
  • This paper is to investigate the behavior of linear static structure stress, the fatigue and experimental shock fracture far engine base in the Auxiliary Power Unit to resolve its restricted electrical power problem. The shock fracture test was experimentally made under MIL standard criteria. The numerical results by finite element method had a good agreement with those from the shock test. The design data of predicting the fracture at the initial crack and the damage behavior of structure with shock and vibration load in the battle field can be obtained from shock test. In the functional shock test, the crack at the side parts of the engine base was found at peak acceleration of 40g.

A Study on Operational Software Development and Calibration of Multi-Axis Vibration Testing Device (다축 제어용 가진기의 구동소프트웨어 개발 및 보정에 관한 연구)

  • 정상화;김재열;류신호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in the ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particularly important in todey's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, Multi-axis durability testing device is used to carry out the fatigue test. In this paper, The operation software for simultaneously driving Multi-axis vibration testing device is developed and the input and output data are displayed in windows of PC controller with real time. Moteover the characteristics of the displacement and the load of Multi-axis actuators are calibrated separately.

  • PDF

A Study on The Load Test Method and Result For Bogie Frame of New LRT (신형 경전철차량 대차프레임 하중시험 방법 및 결과 고찰)

  • Kim, Weon-Kyong;Won, Si-Tae;Jeon, Chang-Seong
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1679-1688
    • /
    • 2008
  • Recently, the bogie frame weight of Light Rail Transit system has been reduced in order to save energy and materials. However, this light weighted vehicle structure is very important to verify the fatigue strength at the development stage. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these components, the bogie frame is most significant component subjected to the whole vehicle and passenger loads. In this study, the bogie frame for the New LRT power car is evaluated to the static and fatigue strength. And the evaluation method is used the LRT Performance Test Standards Specification throughout the FEM analysis and static load test. The static and fatigue test results for the LRT bogie frame of power car has been appeared very safety and stable for the design load conditions.

  • PDF

Quasi Static Fatigue Analysis of Spot Welding Component considering Change of Stiffness (강성변화를 고려한 점용접부의 준정적피로해석)

  • Lee, Dong-Cheol;Jeong, Heon Sul;Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • Spot welding is automation of assembly process, without increasing the vehicle weight and economy, there is a fuel economy improvement of motor vehicles and to widely used in the automotive industry. But By irregular load from the road surface while at the vehicle is running, stress concentration occurs in the weld point, fatigue failure occurs frequently. Considering change of stiffness is the essential fatigue life of the evaluation spot weld. In this paper, by performing a linear static analysis was to understand the vulnerable part. Acquire to the fatigue properties of the spot weld, take the load history of the three levels in the time domain, was performed by setting as a condition of quasi-static fatigue analysis. and Fatigue life prediction method of the spot weld was by applying the method according to the fatigue damage accumulation and the conventional method was compared analyzed with the results shown.

Life Prediction of Automotive Vehicle's W/H System Using Finite Element Analysis (차량용 와이어하네스의 유한요소해석을 이용한 대변형 내구수명 예측)

  • Kim, Byeong-Sam;Kang, Ki-Jun;Park, Kyoung-Woo;Noh, Kwang-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-144
    • /
    • 2010
  • In the automotive electronic industry, the development of vehicle's door wiring harness (W/H) system for new applications is driven continuously for the low-cost and the high strength performance for electronic components. The problem of the fatigue strength estimation for materials and components containing natural defects, inclusions, or inhomogeneities is of great importance both scientifically and industrially. This article gives some insight into the dimensioning process with special focus on the fatigue analysis of wiring harness (W/H) in vehicle's door structures. The results from endurance tests using slim test specimens were compared with the results from FEM for predicted fatigue life. The expectation for the life of components is affected by the microstructural features with complex stress state arising from the combined service loading and residual stresses.

DURABILITY IMPROVEMENT OF A CYLINDER HEAD IN CONSIDERATION OF MANUFACTURING PROCESS

  • Kim, B.;Chang, H.;Lee, K.;Kim, C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.243-248
    • /
    • 2007
  • The durability of a cylinder head is influenced by the thermal and mechanical history during the manufacturing process, as well as engine operation. In order to improve the durability of cylinder head, both load from engine operation and the preload conditions from the manufacturing process must be considered. The aluminum cylinder head used for a HSDI diesel engine is investigated to reduce the possibility of high cycle fatigue crack in this study. FE analysis is performed to elucidate the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. Two separate approaches to increase the durability of the cylinder head are discussed: reducing load from engine operation and re-arranging preload conditions from the manufacturing process at the critical location of the cylinder head. Local design changes of the cylinder head and modification of pretension load in the cylinder head bolt were investigated using FE analysis to relieve load at the critical location during engine operation. Residual stress formed at the critical location during the manufacturing process is measured and heat treatment parameters are changed to re-arrange the distribution of residual stress. Results of FE analysis and experiments showed that thorough consideration of the manufacturing process is necessary to enhance the durability of the cylinder head.

A study on the fatigue characteristics of SM 490 A material due to the welding type (SM 490 A 재질에 대한 용접 유형에 따른 피로특성 연구)

  • Kim, Jae-Hoon;Goo, Byung-Choon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.274-278
    • /
    • 2004
  • This study investigates the fatigue characteristics of SM 490 A material specimens for the railway vehicle due to the welding type. The more stress ratio decreases, the more strength of fillet welded specimen decreases. At speciallly, when the stress ratio of TN(Plate with transverse fillet welded rib) specimens decreases 0.5, 0.1, and -0.1, the fatigue limit decreases unifomly. The strength of TN is higher than it of NCN in the compare of fillet welding type, but the strength of NCN(Non load-carrying cruciform fillet welded joint) is higher than it of CN(Load-carrying cruciform fillet welded joint), which these specimens have the rib in the both side. We analysis the strains on the weld positions of the TN specimens during the fatigue test for the investigation of crack initiation and crack growth. In the theses results, we could find the fatigue crack initiation point and time.

  • PDF

A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters (J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구)

  • Hur, Chung-Weon;Park, Won-Jo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

Fatigue Design and Fatigue Strength Evaluation of Bogie Frame (대차프레임의 피로설계 및 피로강도 평가)

  • 이상록;이학주;한승우;김정엽;차정환;강재윤;박찬경
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.234-241
    • /
    • 2000
  • Stress analysis of the bogie frame by using the finite element method has been performed for the various loading conditions according to the results of vehicle dynamics analysis. Multiaxial fatigue analysis methods such as signed von Mises method, and typical critical plane theories were reviewed, and margin of safety for fatigue is defined. Multiaxial fatigue analysis program to predict the margin of safety of bogie frame under non-proportional loading conditions has been developed by using a commercial command language. Fatigue analysis of bogie frame under multiaxial loading was performed through this program and finite element analysis result. The procedure developed in this study is considered to be useful for the fatigue strength analysis in preliminary design stage of railway components under multiaxial loading condition.

  • PDF

An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle (차량용 스프링강의 피로거동에 미치는 온도의 영향)

  • 박경동;류찬욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.