• Title/Summary/Keyword: Vehicle exhaust gas

Search Result 255, Processing Time 0.028 seconds

A design and implement vehicle similar oil identification and quantitative gas (자동차 유사석유제품 및 정량주유 판별 시스템의 설계 및 구현)

  • Jeong, Da-Woon;Baek, Sung-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.281-284
    • /
    • 2011
  • Recently, many drivers was the damage caused by similar oil product sales and gas station by not using quantitative gas. so, these damages is expected to rise damages by increasing these problem. By using similar oil products, caused damage in the fuel lines' working of lubrication and self-cleaning function for the occurred trouble in the part of the early obsolescence and the accumulation of impurities in the fuel lines, combustion rate due to the difference between retail gasoline engine, the burden of weight, Toxic substances in exhaust emissions, engine oil and unresolved issue is the chemical reaction can occur. to prevent these damages, using the system use in-vehicle state data with OBD-II protocol and measure quantitative gas and similar oil. In this paper, there implement similar oil identification and quantitative gas system through OBD-II scanner to provide WiFi communcation by using WinCe development Board.

  • PDF

A Study on the the Follow-up Analysis and the Characteristics of Exhaust Gas by Standard Mode of Chassis Dynamometer of Gasoline (가솔린 차량의 차대동력계 표준모드 별 추종성 분석 및 배출가스 특성에 관한 연구)

  • Seo, Dong Choon;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a gasoline test vehicle was evaluated for drive quality in emissions and fuel economy tests. The measurement results were compared with the manufacturer's suggested values to evaluate whether the tolerance ranges (fuel efficiency -5%, greenhouse gas +5%) were exceeded. We carried out tests with test subjects based on the SAE J2951 evaluation method. The test vehicle was a 2L gasoline vehicle. The drive following performance was found to increase under deliberate driving conditions and decreased in smooth driving conditions. As a result of the analysis of the drive following performance, the closer the value is to 1, the more accurate the driving is. (-) indicates harsh conditions, and (+) indicates gentle conditions. The basic data on the driver following between testers was obtained by analysis of the tests. The fuel efficiency correlation with the drive following performance within the target speed range of the fuel consumption mode. In the future, these measurement results can serve as key data for securing an exhaust gas database and fuel efficiency system for each measurement mode.

A Study on Exhaust Gas Characteristics of Off-road Mechanical Diesel Engine According to EGR Map Application (Off-Road 기계식 디젤엔진의 EGR Map 적용에 따른 배출가스 특성 연구)

  • Kim, HoonMyung;Kang, JeongHo;Han, DaHye;Ha, HyeongSoo;Jung, HakSup;Pyo, SuKang;Ahn, JuengKyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.665-670
    • /
    • 2014
  • Because reducing atmospheric pollution is becoming a serious issue, studies are actively focusing on exhaust gas reduction. This study was conducted to determine the emission characteristics when applying an EGR system, the main approach used for NOx reduction, to an off-road mechanical diesel engine. For the application of the EGR system, the emission characteristics in consideration of the engine conditions were analyzed. The optimum EGR ratio for NOx emission reduction was determined by applying variable EGR conditions for each engine speed condition. Considering the above process, the emission characteristics of the modified EGR condition are compared with those of other conditions (non-EGR and existing EGR condition) in the NRTC mode. Consequently, NOx emission was reduced by around 42 compared with the non-EGR condition when using the modified EGR map.

Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF (경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구)

  • Kim, JeongHwan;Kim, KiHo;Lee, JungMin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.

An Experimental Study on Spray Characteristics of Bio-diesel fuel in Three Injectors with Different Operating Mechanism for Common-rail System (커먼레일 시스템용 구동방식에 따른 인젝터별 바이오디젤 분무 특성 연구)

  • Sung, Gisu;Kim, Jinsu;Jeong, Seokchul;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2015
  • Recently, exhaust gas regulation has been gradually strengthened due to depletion of fossil fuels and environmental problem like a global warming. Due to this global problem, the demand for eco-friendly vehicle development is rapidly increasing. A clean diesel vehicle is considered as a realistic alternative. The common-rail fuel injection system, which is the key technology of the clean diesel vehicle, has adopted injection strategies such as high pressure injection, multiple injection for better atomization of the fuel. In addition, the emission regulations in the future is expected to be more stringent, which a conventional engine is difficult to deal with. One of the way for actively proceeding is the study of alternative fuels. Among them, the bio-diesel has been attracted as an alternative of diesel. So, in this study, spray characteristics of bio-diesel was analyzed in the common-rail fuel injection system with three injectors driven by different operating mechanism.

Probabilistic Estimation of Thermal Fatigue Performance of Three-Way Catalyst Substrate (삼원 촉매 담체의 확률론적 열피로 성능 평가)

  • Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.669-676
    • /
    • 2014
  • A three-way catalyst substrate for domestic passenger car satisfies the design criteria for exhaust gas exchange and pressure drop but does not have satisfactory thermal fatigue performance. Prefracture faults in this three-way catalyst substrate has often been discovered in vehicle repair or vehicle inspection facilities. This paper presents a thermal fatigue performance estimation method for a three-way catalyst substrate using a probabilistic strength reduction factor model. This method is superior to the thermal fatigue performance estimation method for a three-way catalyst substrate that uses a deterministic strength model.

A Study on Restoration Technology of Unit Injector Spill Valve for Injection System of Commercial Diesel Engine (상용차 디젤의 연료분사장치 유닛 인젝터 핵심부품인 스필 밸브의 성능 복원 관한 연구)

  • Lee, Chunggeun;Lee, Jeongho;Lee, Daeyup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.389-396
    • /
    • 2017
  • Restorations of automotive parts have been done ever since the first vehicle was produced. Because the most expensive parts of a vehicle are in the engine system, there have been various restoration methods developed for engine parts. In the case of commercial diesel engines, the fuel injection device is a key and expensive component. It also has a significant effect on vehicle performance. In particular, reduced engine power and increased exhaust gas emissions may result from mechanical damage due to abrasion of the spill valve in the fuel injection system of a diesel engine. In this paper, restoration techniques for damaged parts are applied to restore the abrasion of a spill valve of fuel injection, also called as the "unit injector", of commercial diesel engines. In order to recover the damage, optimized polishing techniques using hard-metal and coating processes are applied. To evaluate restoration techniques for the spill valve, performance and durability tests are performed on a test bench.

A Study on the Static Collapse Characteristics of CFRP Side Member for Vehicle (차체구조용 CFRP 사이드부재의 정적 압궤특성에 관한 연구)

  • Lee, Kil-Sung;Yang, In-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.83-86
    • /
    • 2005
  • The front-end side members of automobiles, such as the hat-shaped section member, absorb most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP side members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial static collapse tests were performed for the members. The collapse mode and the energy absorption capability of the members were analyzed under the static load.

  • PDF

A Study on the Heat Rejection to Coolant in a Gasoline Engine (가솔린 엔진에서의 냉각수로의 전열량에 대한 연구)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.77-88
    • /
    • 1997
  • The heat rejection to coolant is a dominant factor for building vehicle cooling system such as radiator and cooling fan. Since the vehicle cooling system also has effects on fuel consumption and noise, the study of heat rejection to coolant has been emphasized. However, the study on heat rejection to coolant has been mainly focused on the field that related to the characteristics of combustion and localized heat loss. It is no much of use in design for the entire cooling system because it is focused on such a specific point. In this work, the heat rejection rate to coolant for four different engines are obtained to derive a simple heat transfer empirical formula that can be applied to the engine cooling system design, and it is compared with the other studies. Also, to observe effects of engine operation factors and heat transfer factors on coolant, we measured the metal temperature and the heat rejection rate. The heat rejection to coolant does not depend significantly upon the coolant flowrate, but mainly upon the amount of air fuel mixture and the air fuel ratio as long as the composition of coolant does not change. The reduction of heat rejection to coolant did not effectively improve the fuel consumption, but was mostly converted to raise the exhaust gas temperature and the oil temperature.

  • PDF

An analysis of Laboratory and Real Driving Test using Diesel Vehicles (경유자동차의 실험실과 실도로 주행시험에 관한 비교 분석)

  • Lee, Kwangbum;Yong, Boojoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • Since a diesel vehicle scandal related to the 'A' automobile company was issued in the United States in 2015, many countries have been interested in emission defeat devices. Being embedded in some diesel passenger cars sold in Korea, a defeat device for exhaust gas may have influence on both fuel economy and NOx emissions. In order to examine such effects, we carried out laboratory indoor tests as well as real road driving tests using four models of 'A' automobile company which may employ defeat devices. Those tests were performed observing the test modes of FTP-75, HWFET, and NEDC. Although fuel economy and NOx emissions according to indoor tests comply with the suggested tolerance, the findings in the real road driving tests do not satisfy the tolerance. Along with the results provided in this study, further evaluation may be necessary to investigate the noticeable difference between the indoor and real road tests.