• Title/Summary/Keyword: Vehicle exhaust

Search Result 486, Processing Time 0.021 seconds

A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System (MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구)

  • Kim, Hwan Kuk;Kwon, Hye In;Do, Kyu Hoi
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.

An Experimental Study on the Measurement of Water Surface Discharge Temperature of High-Temperature Bubble Injected into Cylindrical Acrylic Water Tank (원통 아크릴 수조로 주입된 고온 기포의 수면 배출 온도 측정에 관한 실험적 연구)

  • SeokTae Yoon;YongJin Cho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • Submarines, which require a high degree of survivability, are among the most critical combat weapon systems in military strategic assets. Conventional submarines need air to operate their propulsion systems. Exhaust gases released into the water during snorkel navigation heat the surrounding fluid, producing a temperature wake. This wake, in turn, reduces the submarine's survivability. In this study, we conducted a preliminary experiment on the temperature traces formed by an underwater submarine's waste discharge. For this purpose, we collected propulsion system and navigation condition data from domestically introduced submarines and developed an experimental system to measure the temperature traces. As a result, we observed that high-temperature bubbles injected into the tank broke down into smaller sizes, and their temperature dropped to levels similar to the surrounding fluid. This observation was confirmed using a thermocouple sensor. Consequently, the thermal imaging system designed to measure the temperature trace of the water's surface did not detect any significant temperature traces.

A Study on Environmental Impact Assessment and Improvement Measures Around Construction Waste Intermediate Processing Sites in Rural Areas (농촌지역의 건설폐기물 중간처리 사업장 주변 환경 영향 평가 및 개선방안 연구)

  • Jang, Kyong-Pil;Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.65-72
    • /
    • 2024
  • In order to analyze the impact of fine dust generated from a construction waste intermediate processing site on the surrounding areas, diverse types of samples were collected from inside the site and surrounding areas. The impact analysis results of samples are as follows. (1) Compared to the air quality management standards by the Ministry of Environment, the concentration of fine dust within the site was 30 to 46% for PM10 and 14 to 42% for PM2.5, which was not much different from the general air quality level. (2) It was found that PM10 within the site may have a partial effect on the air quality, but when the blocking facilities in the site, wheel washing facilities at vehicle entry and exit route, and sprinkler during working were maintained, the impact on the nearby area was not high. (3) In the case of PM2.5, its concentration was influenced more by the exhaust fumes from work vehicles than fine dust generated during construction waste processing. Since the PM2.5 concentrations in the site and surrounding area were not much different from the general air quality, there was little correlation with the work impact of construction waste intermediate processing sites. (4) Pb, an indicator of heavy metal components, was within 50ng/m3 in all three sites, which was 10% of the domestic management standard and equivalent to the general air quality level. The complaints from residents in nearby areas were filed using indicators based on visual and experiential information in their daily lives, so even if the survey results of environmental impact by the construction intermediate waste processing site are lower than the standard, nearby residents can feel it better than such numerical information. Therefore, specific activities to reduce find dusts should be continuously continued.

Characteristics and Identification of Ambient VOCs Sources in Busan Industrial Area (부산시 공입지역 환경 대기 중 VOCs 특성 및 발생원 규명)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.644-655
    • /
    • 2011
  • VOCs (Volatile Organic Compounds) have adverse effects on human health and have caused serious global air pollution problems such as ozone depletion and cimate changes. The total of 56 target VOCs were selected to be monitored in this study for 4 years (2006~2009). The VOCs were measured every hour. The concentration of BTEX was higher than the other target compounds. Generally, the levels of VOCs measured in this study were higher than those measured by the other studies because Gamjeon and Jangrim monitering sites are located in industrial areas. The seasonal variations showed that the VOCs were the highest in winter. The temporal variations showed that the VOCs were high during commuting time on weekday. PMF model was used to resolve source types and source contributions of VOCs in this study. Identified sources and quantified contributions resolved by PMF were vehicle exhaust (15.22%), thinning solvent (29.83%), surface coating (17.13%), industries (13.95%), LPG vehicle (15.22%), combustion boiler (7.11%) and biogenic source (6.61%). Thinning solvent and Surface coating were the most contributed sources possibly due to manufactures and automobile garages in Gamjeon and solvent and paint manufactures in Sasang-Gu.

Optimization Techniques for the Inverse Analysis of Service Boundary Conditions in a Porous Catalyst Substrate with Fluid-Structure Interaction Problems (유체 구조 상호작용 문제를 가진 다공성 촉매 담체에서 실동경계조건의 역문제 해석을 위한 최적화 기법)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1161-1170
    • /
    • 2011
  • This paper presents a solution to the inverse problem for the service boundary conditions of thermal-flow and structure analysis in a catalyst substrate. The exhaust-gas purification efficiency of a catalyst substrate is influenced by the shape parameter, catalyst ingredients and so on and is estimated by the thermal flow uniformity. The formulations of the inverse problem of obtaining the thermal-flow parameters (inlet temperature, velocity, heat of reaction, convective heat-transfer coefficient) and the direct problem of estimating from a given outlet temperature distribution are described. An experiment was designed and the response-surface optimization technique was used to solve the proposed inverse problem. The temperature distribution of the catalyst substrate was obtained by thermal-flow analysis for the predicted thermal-flow parameters. The thermal stress and durability assessments for the catalyst substrate were performed on the basis of this temperature distribution. The efficiency and accuracy of the inverse approach have been demonstrated through the achievement of good agreement between the thermal-flow response surface model and the results of experimental vehicle tests.

A Study of the Reduction of Diesel-Engine Emissions for Off-Road Vehicles (비도로 차량용 디젤엔진의 배기가스 저감에 관한 연구)

  • Cho, Gyu-Baek;Kim, Hong-Suk;Kang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.577-583
    • /
    • 2011
  • To meet the requirements of the Tier 4 interim regulations for off-road vehicles, emissions of particulate matter (PM) and nitrogen oxides (NOx) must be reduced by 95% and 30%, respectively, compared to current regulations. In this research, both the DPF and HPL EGR systems were investigated, with the aim of decreasing the PM and NOx emissions of a 56-kW off-road vehicle. The results of the experiments show that the DOC-DPF system is very useful for reducing PM emissions. It is also found that the back pressure is acceptable, and the rate of power loss is less than 5%. By applying the HPL EGR system to the diesel engine, the NOx emissions under low- and middle-load conditions are reduced effectively because of the high differential pressure between the turbocharger inlet and the intake manifold. The NOx emissions can be decreased by increasing the EGR rate, but total hydrocarbon (THC) emission increases because of the increased fuel consumption needed to compensate for the power loss caused by EGR and DPF.

A Study for Fire Examples Involved in Engine Coolant leakage, Brake and Exhaust System Over-Heating of Heavy-Duty Truck Vehicle (대형 트럭 자동차의 엔진냉각수 누출, 제동 및 배기시스템 과열에 관련된 화재사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Hwang, Han Sub;You, Chang Bae;Moon, Hak Hoon;Jung, Dong Hwa;Ahn, Ho Cheol;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.40-45
    • /
    • 2019
  • This paper is a purpose to study the failure example for heavy-duty vehicle fire. The first example, the researcher found the engine over-heating phenomenon causing a coolant leakage by the sealing poor of head-gasket because of D-ring part deformation contacting with cylinder liner top-part and cylinder head. He certified a fire breakout by short transferred to surrounding wiring of air-cleaner. The second example, a brake lining by return fault of break operating S cam causing with much wear of a rear 4 wheel brake lining repeatably was worn by friction. In the long run, it became the cause of fire. The third example, the researcher knew the fire cause was came about the short of wire by overload of tilting motor when the driver tilted up the cap to inspect a engine. Therefore, a heavy-duty fire must minimize the fire occurrence by thorough controlling.

A Study of Greenhouse Gas Emission Rates from LDTs according to Emission Certification Modes and Real-World Vehicle Driving Cycles in Korea (차량인증모드와 실도로 주행모드별 국내 경유 소형화물 자동차의 온실가스 배출특성 분석)

  • Kim, Ji Young;Seo, Chungyoul;Son, Jihwan;Park, Junhong;Moon, Taeyoung;Lee, Sangeun;Kim, Jeongsoo
    • Journal of Climate Change Research
    • /
    • v.3 no.4
    • /
    • pp.235-243
    • /
    • 2012
  • Mobile sources are one of the most significant contributors to the inventory of greenhouse gas (GHG). The administration in Korea has set a goal of cutting GHG emissions of vehicles by 34.3% compared to Business As Usual (BAU) by 2020. To achieve this goal, GHG emission standards for vehicles have been applied since 2012, and now light-duty trucks are under consideration to be included to the vehicle types that will be regulated in the new version of GHG emission standards. Therefore, this study focuses on analyzing characteristics of exhaust GHGs (CO2, CH4, and N2O) emissions of diesel light-duty trucks according to their various driving modes. GHGs emissions of diesel light-duty trucks reduced in inverse proportion to the speed of the vehicles. GHGs emissions from the combined mode were 8% and 14% lower than those from the CVS- 75 and NEDC modes, respectively.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

Experimental Study on the Performance Characteristics of Air Hybrid Engine (Air hybrid 엔진의 구동 특성에 관한 실험적 연구)

  • Lee, Yong-Gyu;Kim, Yong-Rae;Kim, Young-Min;Park, Chul-Woong;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.50-56
    • /
    • 2011
  • A preliminary experimental study of new concept air hybrid engine, which stores compressed air in the tank during braking and re-use it to propel vehicle during crusing or acceleration, was carried out in this study. A single cylinder engine was modified to realize the concept of air hybrid engine. Independent variable valve lift system was adopted in one of the exhaust valves to store the compressed air into the air tank during compression period. An air injector module was installed in the place of spark plug, and the stored compressed air was supplied during the expansion period to realize air motoring mode. For air compression mode, the tank with volume of 30 liter could be charged up to more than 13 bar. By utilizing this stored compressed air, motoring work of 0.41 bar of IMEP(Indicated mean effective pressure) at maximum can be generated at the 800rpm conditions, which is higher than the case of normal idle condition by 1.1 bar of IMEP.