• Title/Summary/Keyword: Vehicle dynamic modeling

Search Result 235, Processing Time 0.028 seconds

Dynamic Modeling of a Railway Vehicle under Braking (제동시의 철도차량을 위한 동적모델)

  • Park, Joon-Hyuk;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.431-437
    • /
    • 2007
  • This paper describes the dynamic modeling of a railway vehicle when it is under braking force. It is important for the enhancement of braking performance to establish a proper dynamic model of a railway vehicle because the braking performance is affected by some dynamic forces generated by a railway vehicle when it undergoes braking. In this paper, a dynamic model for one vehicle is suggested to compute the dynamic behavior of a railway vehicle in the HILS(Hardware In-the-loop Simulation) system for the railway vehicle braking devices. To simplify the dynamic model, friction between a wheel and a rail is assumed that there exist only the static and the dynamic friction forces. Static friction coefficient is also assumed to be a function of the running speed. Some simulations are carried out with various braking forces, and the braking characteristics according to the change of the braking force are discussed. This study can provide some fundamental results to construct the HILS system for braking devices of a railway vehicle.

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

A Study of Dynamic Modeling of a Magnetic Levitation Vehicle (자기부상열차의 동적 모델링 연구)

  • 한형석;조홍재;김동성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.160-166
    • /
    • 2003
  • Interest in advanced vehicles results in correspondingly increased interest in modeling and simulation of the dynamic behavior of Maglev-type vehicle systems. DADS is a program especially suited for the analysis of multibody mechanical systems. This paper demonstrates the application of DADS to the dynamic modeling and simulation of such advanced vehicles. A brief description is made of the modeling requirements of magnetically levitated systems, along with a summary of some of the related capabilities of DADS. As a case study, an analysis of a vehicle based on the UTM01 system is presented. This paper shows that the presented modeling technique is applicable to the dynamic characteristics evaluation and control law design of Maglev- type vehicles.

Modeling of Stabilizer for Vehicle Dynamic Analysis (차량동역학 해석에서 스태필라이저의 모델링)

  • Cho, Byoung-Kwan;Song, Sung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.30-35
    • /
    • 1996
  • Tires, bushings and stabilizers are the most difficult elements in vehicle modeling for dynamic analyses. Many studies were performed for tire modeling and the primitive data of bushing elements can be obtained from the suspension designer, but there are few things for stabilizer. This paper presents simulation results for the 3 kinds of stabilizer model with the multi-body dynamic analysis program ADAMS. Each simulation result was compared with the vehicle test result, and the stabilizer model was proposed to analyze the vehicle behaviors precisely.

  • PDF

Dynamic Behavior Modeling of a Train Vehicle for The Prediction of Braking Characteristics (제동특성 예측을 위한 철도차량의 동적거동 모델링)

  • Park, Joon-Hyuk;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1631-1638
    • /
    • 2007
  • In this paper, a modeling for the dynamic behavior of a train vehicle is suggested for the prediction of the braking characteristics. In the dynamic modeling, effects of the primary and secondary suspension elements are considered and interactions between two vehicles are also estimated. This study can offer some fundamental results for a further research to enhance the braking performance using active braking control.

  • PDF

Dynamic Characteristic Analysis of the Vehicle System Model (차량 시스템 모델의 동특성 해석)

  • Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.459-464
    • /
    • 2001
  • Vibration characteristics of a vehicle are mainly influenced by dynamic stiffness of the vehicle body structure and material and physical properties of the components attached to the vehicle body structure. In this paper, modeling techniques of the vehicle components are presented and the effects of the vehicle components on the vibration characteristics of the vehicle are investigated.

  • PDF

Modeling of Non-linear Leaf Spring for Commercial Vehicle (상용차량의 비선형 Hotchkiss 스프링 모델링)

  • 유승환;김영배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A Hotchkiss spring has been widely utilized for commercial vehicle. Usually, the Hotchkiss spring has non-linear characteristics, i.e. it has a piecewise spring stiffness as well as hysterisis phenomenon. Therefore, the modeling of the Hotchkiss spring requires many considerations to fulfill satisfactory vehicle kinematic and dynamic relationships. Also, the spring has difficulties in modeling for presenting contact mechanism. In this paper, the modeling technique for the Hotchkiss spring has been descried. The modeling covers non-linear characteristics as well as contact problems for multi-body dynamic simulation. The force-displacement results are compared with experimental and FEM ones. Also, the comparison between three link type leaf spring model and proposed one has been considered in this paper.

Modeling and Dynamic Analysis for Electric Vehicle Powertrain Systems (전기 자동차 파워트레인의 모델링 및 동특성 분석)

  • Park, Gwang-Min;Lee, Seong-Hun;Jin, Sung-Ho;Kwak, Sang-Shin
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.71-81
    • /
    • 2011
  • Unlike a typical internal combustion engine vehicle, the powertrain system of the pure electric vehicle, consisting of battery, inverter and motor, has direct effects on the vehicle performance and dynamics. Then, the specific modeling of such complex electro-mechanical components enables the insight into the longitudinal dynamic outputs of the vehicle and analysis of entire powertrain systems. This paper presents the dynamic model of electric vehicle powertrain systems based on theoretical approaches to predict and analyze the final output performance of electric vehicles. Additionally, the correlations between electric input signals and the final output of the mechanical system are mathematically derived. The proposed model for powertrain dynamics of electric vehicle systems are validated with a reference electric vehicle model using generic simulation platform based on Matlab/Simulink software. Consequently, the dynamic analysis results are compared with electric vehicle simulation model in some parameters such as vehicle speed/acceleration, and propulsion forces.

Hybrid control of a tricycle wheeled AGV for path following using advanced fuzzy-PID

  • Bui, Thanh-Luan;Doan, Phuc-Thinh;Van, Duong-Tu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1287-1296
    • /
    • 2014
  • This paper is about control of Automated Guided Vehicle for path following using fuzzy logic controller. The Automated Guided Vehicle is a tricycle wheeled mobile robot with three wheels, two fixed passive wheels and one steering driving wheel. First, kinematic and dynamic modeling for Automated Guided Vehicle is presented. Second, a controller that integrates two control loops, kinematic control loop and dynamic control loop, is designed for Automated Guided Vehicle to follow an unknown path. The kinematic control loop based on Fuzzy logic framework and the dynamic control loop based on two PID controllers are proposed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

Empirical Modeling of Steering System for Autonomous Vehicles

  • Kim, Ju-Young;Min, Kyungdeuk;Kim, Young Chol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.937-943
    • /
    • 2017
  • To design an automatic steering controller with high performance for autonomous vehicle, it is necessary to have a precise model of the lateral dynamics with respect to the steering command input. This paper presents an empirical modeling of the steering system for an autonomous vehicle. The steering system here is represented by three individual transfer function models: a steering wheel actuator model from the steering command input to the steering angle of the shaft, a dynamic model between the steering angle and the yaw rate of the vehicle, and a dynamic model between the steering command and the lateral deviation of vehicle. These models are identified using frequency response data. Experiments were performed using a real vehicle. It is shown that the resulting identified models have been well fitted to the experimental data.