• 제목/요약/키워드: Vehicle detection

검색결과 1,314건 처리시간 0.027초

물체인식 및 회피를 위한 무인자동차의 제어 및 모델링에 관한 연구 (Research of the Unmanned Vehicle Control and Modeling for Obstacle Detection and Avoidance)

  • 김상겸;김정하
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.183-192
    • /
    • 2003
  • Obstacle detection and avoidance are considered as one of the key technologies on an unmanned vehicle system. In this paper, we propose a method of obstacle detection and avoidance and it is composed of vehicle control, modeling, and sensor experiments. Obstacle detection and avoidance consist of two parts: one is longitudinal control system for acceleration and deceleration and the other is lateral control system for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control system of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are evaluated through road tests.

머신 러닝을 이용한 영상 특징 기반 전기차 검출 및 분류 시스템 (Image Feature-based Electric Vehicle Detection and Classification System Using Machine Learning)

  • 김상혁;강석주
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1092-1099
    • /
    • 2017
  • This paper proposes a novel way of vehicle detection and classification based on image features. There are two main processes in the proposed system, which are database construction and vehicle classification processes. In the database construction, there is a tight censorship for choosing appropriate images of the training set under the rigorous standard. These images are trained using Haar features for vehicle detection and histogram of oriented gradients extraction for vehicle classification based on the support vector machine. Additionally, in the vehicle detection and classification processes, the region of interest is reset using a number plate to reduce complexity. In the experimental results, the proposed system had the accuracy of 0.9776 and the $F_1$ score of 0.9327 for vehicle classification.

Vehicle Detection at Night Based on Style Transfer Image Enhancement

  • Jianing Shen;Rong Li
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.663-672
    • /
    • 2023
  • Most vehicle detection methods have poor vehicle feature extraction performance at night, and their robustness is reduced; hence, this study proposes a night vehicle detection method based on style transfer image enhancement. First, a style transfer model is constructed using cycle generative adversarial networks (cycleGANs). The daytime data in the BDD100K dataset were converted into nighttime data to form a style dataset. The dataset was then divided using its labels. Finally, based on a YOLOv5s network, a nighttime vehicle image is detected for the reliable recognition of vehicle information in a complex environment. The experimental results of the proposed method based on the BDD100K dataset show that the transferred night vehicle images are clear and meet the requirements. The precision, recall, mAP@.5, and mAP@.5:.95 reached 0.696, 0.292, 0.761, and 0.454, respectively.

미약한 시각 특징과 Haar 유사 특징들의 강화 연결에 의한 도로 상의 실 시간 차량 검출 (Real Time On-Road Vehicle Detection with Low-Level Visual Features and Boosted Cascade of Haar-Like Features)

  • 샴 아디카리;유현중;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.17-21
    • /
    • 2011
  • This paper presents a real- time detection of on-road succeeding vehicles based on low level edge features and a boosted cascade of Haar-like features. At first, the candidate vehicle location in an image is found by low level horizontal edge and symmetry characteristic of vehicle. Then a boosted cascade of the Haar-like features is applied to the initial hypothesized vehicle location to extract the refined vehicle location. The initial hypothesis generation using simple edge features speeds up the whole detection process and the application of a trained cascade on the hypothesized location increases the accuracy of the detection process. Experimental results on real world road scenario with processing speed of up to 27 frames per second for $720{\times}480$ pixel images are presented.

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.

차량의 후미등을 이용한 야간 고속도로상의 실시간 차량검출 및 카운팅 (Real Time Vehicle Detection and Counting Using Tail Lights on Highway at Night Time)

  • 칼릴로브 발리존;오염덕;김봉근
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.135-136
    • /
    • 2017
  • When driving at night time environment, the whole body of transports does not visible to us. Due to lack of light conditions, there are only two options, which is clearly visible their taillights and break lights. To improve the recognition correctness of vehicle detection, we present an approach to vehicle detection and tracking using finding contour of the object on binary image at night time. Bilateral filtering is used to make more clearly on threshold part. To remove unexpected small noises used morphological opening. In verification stage, paired tail lights are tracked during their existence in the ROI. The accuracy of the test results for vehicle detection is about 93%.

  • PDF

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • 제12권2호
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

시각적 특징들을 이용한 도로 상의 후방 추종 차량 인식 (On-Road Succeeding Vehicle Detection using Characteristic Visual Features)

  • 샴 아디카리;조휘택;유현중;양창주;김형석
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.636-644
    • /
    • 2010
  • A method for the detection of on-road succeeding vehicles using visual characteristic features like horizontal edges, shadow, symmetry and intensity is proposed. The proposed method uses the prominent horizontal edges along with the shadow under the vehicle to generate an initial estimate of the vehicle-road surface contact. Fast symmetry detection, utilizing the edge pixels, is then performed to detect the presence of vertically symmetric object, possibly vehicle, in the region above the initially estimated vehicle-road surface contact. A window defined by the horizontal and the vertical line obtained from above along with local perspective information provides a narrow region for the final search of the vehicle. A bounding box around the vehicle is extracted from the horizontal edges, symmetry histogram and a proposed squared difference of intensity measure. Experiments have been performed on natural traffic scenes obtained from a camera mounted on the side view mirror of a host vehicle demonstrate good and reliable performance of the proposed method.

차량검지를 위한 세그먼트에 기반을 둔 신호처리 알고리즘 (Segmentation-based Signal Processing Algorithm for Vehicle Detection)

  • 고기원;우광준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.306-308
    • /
    • 2005
  • The vehicle detection method using pulse radar has the advantage of maintenance in comparison with loop detection method. We have the information about the vehicle being and position by dividing the signals into sectors in accordance with SSC method, and by applying the discriminant function based on stochastical data. We also reduce the signal processing time.

  • PDF

차선과 도로영역 정보를 이용한 전방 차량 영역의 추출 기법 (A Scheme of Extracting Forward Vehicle Area Using the Acquired Lane and Road Area Information)

  • 유재형;한영준;한헌수
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.797-807
    • /
    • 2008
  • 본 논문은 복잡한 도로 영상에서 차량 검출의 효율성을 높이기 위해 체인코드를 이용한 차선의 검출로부터 도로 영역을 찾아 차량이 존재하는 차량 영역의 추출 기법을 제안한다 먼저, 복잡한 도로 영상에서 정확한 차선을 검출하기 위해 체인코드를 이용하여 에지 화소들간의 연결성을 고려한다. 주행 차량의 방향과 일치하는 차선을 검출한 후, 중앙의 차선으로부터 차도의 폭과 차선의 소실점을 찾아 인접하는 차도를 찾는다. 마지막으로 주행 차선과 인접 차선을 포함하는 도로 영역 내에 차량의 에지 정보를 이용하여 차량이 존재하는 차량 영역을 추출한다 따라서, 제안하는 차량 영역의 추출 기법은 복잡한 배경을 갖는 도로 영상에서 차량의 검출율을 높이고 추출된 차량 영역에 한정할 수 있기 때문에 차량을 검출하는데 매우 효율적이다. 본 논문은 제안하는 차량 영역의 추출 기법의 우수성을 복잡한 도로 영상에서 차량 검출율의 실험을 통해 검증하였다.