• Title/Summary/Keyword: Vehicle detection

Search Result 1,314, Processing Time 0.025 seconds

Improving the Vehicle Damage Detection Model using YOLOv4 (YOLOv4를 이용한 차량파손 검출 모델 개선)

  • Jeon, Jong Won;Lee, Hyo Seop;Hahn, Hee Il
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.750-755
    • /
    • 2021
  • This paper proposes techniques for detecting the damage status of each part of a vehicle using YOLOv4. The proposed algorithm learns the parts and their damages of the vehicle through YOLOv4, extracts the coordinate information of the detected bounding boxes, and applies the algorithm to determine the relationship between the damage and the vehicle part to derive the damage status for each part. In addition, the technique using VGGNet, the technique using image segmentation and U-Net model, and Weproove.AI deep learning model, etc. are included for objectivity of performance comparison. Through this, the performance of the proposed algorithm is compared and evaluated, and a method to improve the detection model is proposed.

Development of a Vehicle Tracking Algorithm using Automatic Detection Line Calculation (검지라인 자동계산을 이용한 차량추적 알고리즘 개발)

  • Oh, Ju-Taek;Min, Joon-Young;Hur, Byung-Do;Kim, Myung-Seob
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.265-273
    • /
    • 2008
  • Video Image Processing (VIP) for traffic surveillance has been used not only to gather traffic information, but also to detect traffic conflicts and incident conditions. This paper presents a system development of gathering traffic information and conflict detection based on automatic calculation of pixel length within the detection zone on a Video Detection System (VDS). This algorithm improves the accuracy of traffic information using the automatic detailed line segmentsin the detection zone. This system also can be applied for all types of intersections. The experiments have been conducted with CCTV images, installed at a Bundang intersection, and verified through comparison with a commercial VDS product.

Intrusion Detection System for In-Vehicle Network to Improve Detection Performance Considering Attack Counts and Attack Types (공격 횟수와 공격 유형을 고려하여 탐지 성능을 개선한 차량 내 네트워크의 침입 탐지 시스템)

  • Hyunchul, Im;Donghyeon, Lee;Seongsoo, Lee
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.622-627
    • /
    • 2022
  • This paper proposes an intrusion detection system for in-vehicle network to improve detection performance considering attack counts and attack types. In intrusion detection system, both FNR (False Negative Rate), where intrusion frame is misjudged as normal frame, and FPR (False Positive Rate), where normal frame is misjudged as intrusion frame, seriously affect vechicle safety. This paper proposes a novel intrusion detection algorithm to improve both FNR and FPR, where data frame previously detected as intrusion above certain attack counts is automatically detected as intrusion and the automatic intrusion detection method is adaptively applied according to attack types. From the simulation results, the propsoed method effectively improve both FNR and FPR in DoS(Denial of Service) attack and spoofing attack.

Real-Time Vehicle License Plate Detection Based on Background Subtraction and Cascade of Boosted Classifiers

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.909-919
    • /
    • 2014
  • License plate (LP) detection is the most imperative part of an automatic LP recognition (LPR) system. Typical LPR contains two steps, namely LP detection (LPD) and character recognition. In this paper, we propose an efficient Vehicle-to-LP detection framework which combines with an adaptive GMM (Gaussian Mixture Model) and a cascade of boosted classifiers to make a faster vehicle LP detector. To develop a background model by using a GMM is possible in the circumstance of a fixed camera and extracts the motions using background subtraction. Firstly, an adaptive GMM is used to find the region of interest (ROI) on which motion detectors are running to detect the vehicle area as blobs ROIs. Secondly, a cascade of boosted classifiers is executed on the blobs ROIs to detect a LP. The experimental results on our test video with the resolution of $720{\times}576$ show that the LPD rate of the proposed system is 99.14% and the average computational time is approximately 42ms.

Efficient Lane Detection for Preceding Vehicle Extraction by Limiting Search Area of Sequential Images (전방의 차량포착을 위한 연속영상의 대상영역을 제한한 효율적인 차선 검출)

  • Han, Sang-Hoon;Cho, Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.705-717
    • /
    • 2001
  • In this paper, we propose a rapid lane detection method to extract a preceding vehicle from sequential images captured by a single monocular CCD camera. We detect positions of lanes for an individual image within the limited area that would not be hidden and thereby compute the slopes of the detected lanes. Then we find a search area where vehicles would exist and extract the position of the preceding vehicle within the area with edge component by applying a structured method. To verify the effects of the proposed method, we capture the road images with a notebook PC and a CCD camera for PC and present the results such as processing time for lane detection, accuracy and vehicles detection against the images.

  • PDF

Vision-Based Vehicle Detection and Tracking Using Online Learning (온라인 학습을 이용한 비전 기반의 차량 검출 및 추적)

  • Gil, Sung-Ho;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.1-11
    • /
    • 2014
  • In this paper we propose a system for vehicle detection and tracking which has the ability to learn on-line appearance changes of vehicles being tracked. The proposed system uses feature-based tracking method to estimate rapidly and robustly the motion of the newly detected vehicles between consecutive frames. Simultaneously, the system trains an online vehicle detector for the tracked vehicles. If the tracker fails, it is re-initialized by the detection of the online vehicle detector. An improved vehicle appearance model update rule is presented to increase a tracking performance and a speed of the proposed system. Performance of the proposed system is evaluated on the dataset acquired on various driving environment. In particular, the experimental results proved that the performance of the vehicle tracking is significantly improved under bad conditions such as entering a tunnel and passing rain.

A Study on Guidance Methods of Mine Disposal Vehicle Considering the Sensor Errors (센서 오차를 고려한 기뢰제거용 무인잠수정의 유도방법)

  • Byun, Seung-Woo;Kim, Donghee;Im, Jong-Bin;Han, Jong-Hoon;Park, Do-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.277-286
    • /
    • 2017
  • This paper introduces mathematical modelling and control algorithm of expendable mine disposal vehicle. This vehicle has two longitudinal thrusters, one vertical thruster and internal mass moving system which can control pitch rate. Also, the vehicle has an optical camera and forward looking sonar for underwater mine detection and classification. The vehicle is controlled via an optical cable connected with operating console on the mother ship. We describe the vehicle's 6DOF dynamic model and controller which can track the desired trajectory for the way-point tracking. These simulation results shows guidance and maneuvering performance which has other sensor data or not.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking (차선인식을 위한 무인자동차의 차량제어 및 모델링에 관한 연구)

  • 김상겸;임하영;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.213-221
    • /
    • 2003
  • This paper describes a method of lane tracking by means of a vision system which includes vehicle control and modeling. Lane tracking is considered one of the important technologies in an unmanned vehicle and mobile robot system. The current position and condition of the vehicle are calculated from an image processing method by a CCD camera. We deal with lane tracking as follows. First, vehicle control is included in the road model, and lateral and longitudinal controls. Second, the image processing method deals with the lane detection method, image processing algerian, and filtering method. Finally, this paper proposes a correct method for lane detection through a vehicle test by wireless data communication.

Steering Control of Autonomous Vehicle by the Vision System

  • Kim, Jung-Ha;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.1-91
    • /
    • 2001
  • The subject of this paper is vision system analysis of the autonomous vehicle. But, autonomous vehicle is one of the difficult topics from the point of view of several constrains on mobility, speed of vehicle and lack of environment information. Therefore, we are application of the vision system so that autonomous vehicle. Vision system of autonomous vehicle is likely to eyes of human. This paper can be divided into 2 parts. First, acceleration system and brake control system for longitudinal motion control. Second vision system of real time lane detection is for lateral motion control. This part deals lane detection method and image processing method. Finally, this paper focus on the integration of tole-operating vehicle and autonomous ...

  • PDF

Development of a Real-Time Video Image Tracking Algorithm for Incident Detection

  • Oh, Ju-Taek;Min, Joon-Young;Heo, Byung-Do;Kim, Myung-Seob
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.49-60
    • /
    • 2008
  • The current VIPS are not effective in safety point of view, because they are originally developed for mimicking loop detectors. Therefore, it is important to identify vehicle trajectories in real time, because recognizing vehicle movements over a detection zone enables to identify which situations are hazardous, and what causes them to be hazardous. In order to improve limited safety functions of the current VIPS, this research has developed a computer vision system of monitoring individual vehicle trajectories based on image processing, and offer the detailed information, for example, incident detection and conflict as well as traffic information via tracking image detectors. This system is capable of recognizing individual vehicle maneuvers and increasing the effectiveness of various traffic situations. Experiments were conducted for measuring the cases of incident detection and abnormal vehicle trajectory with rapid lane change.

  • PDF