• 제목/요약/키워드: Vehicle cruise control system

검색결과 103건 처리시간 0.031초

String Stability를 보장하는 정지/서행 순항제어 시스템 (A Stop-and-Go Cruise Control Strategy with Guaranteed String Stability)

  • 박요한;이경수
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.227-233
    • /
    • 2002
  • A vehicle longitudinal control strategy with guaranteed string stability for vehicle stop-and-go(SG) cruise control is presented in this paper. The SG cruise control systems should be designed such that string stability can be guaranteed in addition to that every vehicle in a string of SG cruise control vehicles must track any bounded acceleration and velocity profile of its preceding vehicle with a bounded spacing and velocity error. An optimal vehicle following control law based on the information of the 1311owing distance (clearance) and its velocity relative to the vehicle ahead (relative velocity) has been used and string stability analysis has been done based on the control law and constant time gap spacing policy, A validated multi-vehicle simulation package has been shown that the string stability analysis using the approximate model of the vehicle servo-loop which includes vehicle powertrain and brake control system dynamics is valid in the design of the SG cruise control law with guaranteed string stability.

정지/서행 순항 제어 시스템을 위한 쓰로틀/브레이크 제어기법 (A Throttle/Brake Control Law for Stop and Go Cruise Control System)

  • 홍진호;이경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.641-646
    • /
    • 2000
  • This paper addresses a throttle/brake control law for stop and go cruise control systems which make the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle. The uncertainties of vehicle model have been considered in the design of the control law. The effect of throttle/brake control has been investigated via simulations. The simulations were performed using a complete nonlinear vehicle model. The results indicate that the proposed throttle/brake control law can provide the stop and go cruise control system with a good distance tracking performance.

  • PDF

STOP AND GO CRUISE CONTROL

  • Venhovens, P.;Naab, K.;Adiprasito. B.
    • International Journal of Automotive Technology
    • /
    • 제1권2호
    • /
    • pp.61-69
    • /
    • 2000
  • This paper will address the basic requirements for realizing a stop and go cruise control system. Issues discussed comprise: functional, sensor and basic HMI requirements, primary characterization of naturalistic stop & go driving, and the basic approach of the transformation of situational knowledge in an elementary controller.

  • PDF

다차량 추종 적응순항제어 (Multi-Vehicle Tracking Adaptive Cruise Control)

  • 문일기;이경수
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

Modeling and Control of an Electronic-Vacuum Booster for Vehicle Cruise Control

  • Lee, Chankyu;Kyongsu Yi
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1314-1319
    • /
    • 2002
  • A mathematical model and control laws for an Electronic-Vacuum Booster (EVB) for application to vehicle cruise control will be presented. Also this paper includes performance test result of EVB and vehicle cruise control experiments. The pressure difference between the vacuum chamber and the apply chamber is controlled by a PWM-solenoid-valve. Since the pressure at the vacuum chamber is identical to that of the engine intake manifold, the output of the electronic-vacuum booster Is sensitive to engine speed. The performance characteristics of the electronic-vacuum booster have been investigated via computer simulations and vehicle tests. The mathematical model of the electronic-vacuum booster developed in this study and a two-state dynamic engine model have been used in the simulations. It has been shown by simulations and vehicle tests that the EVB-cruise control system can provide a vehicle with good distance control performance in both high speed and low speed stop and go driving situations.

운전자 주행 특성 파라미터를 고려한 지능화 차량의 적응 제어 (Driver Adaptive Control Algorithm for Intelligent Vehicle)

  • 민석기;이경수
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1146-1151
    • /
    • 2003
  • In this paper, results of an analysis of driving behavior characteristics and a driver-adaptive control algorithm for adaptive cruise control systems have been described. The analysis has been performed based on real-world driving data. The vehicle longitudinal control algorithm developed in our previous research has been extended based on the analysis to incorporate the driving characteristics of the human drivers into the control algorithm and to achieve natural vehicle behavior of the adaptive cruise controlled vehicle that would feel comfortable to the human driver. A driving characteristic parameters estimation algorithm has been developed. The driving characteristics parameters of a human driver have been estimated during manual driving using the recursive least-square algorithm and then the estimated ones have been used in the controller adaptation. The vehicle following characteristics of the adaptive cruise control vehicles with and without the driving behavior parameter estimation algorithm have been compared to those of the manual driving. It has been shown that the vehicle following behavior of the controlled vehicle with the adaptive control algorithm is quite close to that of the human controlled vehicles. Therefore, it can be expected that the more natural and more comfortable vehicle behavior would be achieved by the use of the driver adaptive cruise control algorithm.

종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬 (A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System)

  • 이경수;문일기;안장모
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬 (A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System)

  • 이경수;문일기;안장모
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.215-215
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

Design of Autonomous Cruise Controller with Linear Time Varying Model

  • Chang, Hyuk-Jun;Yoon, Tae Kyun;Lee, Hwi Chan;Yoon, Myung Joon;Moon, Chanwoo;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2162-2169
    • /
    • 2015
  • Cruise control is a technology for automatically maintaining a steady speed of vehicle as set by the driver via controlling throttle valve and brake of vehicle. In this paper we investigate cruise controller design method with consideration for distance to vehicle ahead. We employ linear time varying (LTV) model to describe longitudinal vehicle dynamic motion. With this LTV system we approximately model the nonlinear dynamics of vehicle speed by frequent update of the system parameters. In addition we reformulate the LTV system by transforming distance to leading vehicle into variation of system parameters of the model. Note that in conventional control problem formulation this distance is considered as disturbance which should be rejected. Consequently a controller can be designed by pole placement at each instance of parameter update, based on the linear model with the present system parameters. The validity of this design method is examined by simulation study.

Test Bed for Vehicle Longitudinal Control Using Chassis Dynamometer and Virtual Reality: An Application to Adaptive Cruise Control

  • Mooncheol Won;Kim, Sung-Soo;Kang, Byeong-Bae;Jung, Hyuck-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1248-1256
    • /
    • 2001
  • In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consists of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computers that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control(ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.

  • PDF