• Title/Summary/Keyword: Vehicle acceleration

Search Result 810, Processing Time 0.031 seconds

Mechanical System Design and Development of the HAUSAT-1 Picosatellite (초소형위성 HAUSAT-1의 기계시스템 설계 및 개발)

  • Hwang, Ki-Lyong;Min, Myung-Il;Moon, Byoung-Young;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.103-113
    • /
    • 2004
  • The satellite is exposed to the severe vibration environments such as random vibration environments such as random vibration, acceleration, shock, and acoustics during launch ascent and transportation. It is also faced with various space environments such as thermal vacuum, radiation and microgravity during the mission life. The satellite should be designed, manufactured, assembled and tested to be able to endure in these harsh environments. This paper addresses the results of the structural and thermal design and analyses for the HAUSAT-1 picosatellite which is scheduled to launch in the first quarter of 2005 by Russian launch vehicle "Dnepr". The qualification vibration and thermal vacuum tests have been conducted and passed at the satellite level to ensure that the HAUSAT-1 mechanical system was designed to be stable with enough margin.

Soil Stiffness Evaluation using Vibration Frequency (진동주파수 해석을 통한 지반강성 평가방법)

  • Kim, Ju-Hyong;Yoo, Wan-Kyu;Kim, Byoung-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.987-992
    • /
    • 2009
  • Continuous Compaction Control is a new cutting edge technique in United States, Japan and European construction market that uses an instrumented compactor to measure soil stiffness in real time usually with vehicle tracking system such as Global Navigation Satellite System (GNSS). In this study, soil stiffness was evaluated by adapting Fourier transforming technique with acceleration data obtained from accelerometers used as a continuous compaction control instrument. The soil stiffness obtained by accelerometers gave analogous results with reference results such as dry density, elastic modulus obtained from Geogauge and Light falling deflectometer.

  • PDF

Identification of Track Irregularity using Wavelet Transfer Function (웨이브렛 전달함수를 이용한 궤도틀림 식별)

  • Shin, Soo-Bong;Lee, Hyeung-Jin;Kim, Man-Cheol;Yoon, Seok-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • This paper presents a methodology for identifying track irregularity using a wavelet transfer function. An equivalent wavelet SISO (single-input single-output) transfer function is defined by the measured track geometry and the acceleration data measured at a bogie of a train. All the measured data with various sampling frequencies were rearranged according to the constant 25cm reference recording distance of the track recording vehicle used in the field. Before applying the wavelet transform, measured data were regressed by eliminating those out of the range. The inverse wavelet transfer function is also formulated to estimate track geometry. The closeness of the estimated track geometry to the actual one is evaluated by the coherence function and also by FRF (frequency response function). A track irregularity index is defined by comparing the variance of the estimation error from the intact condition and that from the current condition. A simulation study has been carried out to examine the proposed algorithm.

A Study on the Dynamic Characteristics on the Test Line for Korean High Speed Train (한국형 고속전철의 주행진동 특성에 관한 연구)

  • 김영국;김석원;박찬경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.555-560
    • /
    • 2003
  • Korean High Speed Train(KHST) has been tested on the high speed test line in Osung site of Korea High Speed Rail Construction Authority (KHRC). since it was developed as G7 Project Plan In 2002. This paper introduces the dynamic test devices in KHST and shows the comparison between the results of test and theoretical computing results which derive from the new model for KHST dynamic behavior. Previous computer simulation model for KHST was developed to review wether the vehicle system was satisfied with the dynamic performance requirements during the design procedure. But It should be applied the results of the parts test for suspension elements in order to compare between the results of computation and real test. Using VAMPIRE Program made by AEA Technology in UK. the new model also was modified. This paper shows that the static wheel loads calculated from new model is similar to test results. For test on high speed line, we prepared the test devices for evaluating the dynamic performances. which was consisted of the accelerometers( based on Kisler Co.) and the data aquisition systems (based on National instrument Co.), and test program coded by LabView 6i program. These lest devices and programs are flexible to extension the channels for adding sensors and connect to the ethernet network. The acceleration of car bodies, bogie frames and axle boxes were compared between the results of computation and test at 150km/. This paper shows that the results of test were high in high frequency band range but similar frequency band range. It might be considered that these differences were caused by the test which did not performed at constant speed for comparison analysis. Also. It will be able to understand the differences and make better results through a lot of tests planed in future.

  • PDF

Characteristics of Electronically Controlled 13L LNG-Diesel Dual Fuel Engine (13L급 LNG-디젤 혼소엔진의 기초 성능 특성 연구)

  • Lee, Seok-Hwan;Lee, Jin-Wook;Heo, Seong-Joon;Yoon, Sung-Shik;Roh, Yun-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.54-58
    • /
    • 2007
  • The trailers with electronically controlled diesel engine was converted to dual fuel engine system. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, mximum driving distance per refueling and driveability are examined on the road including a free way. Developed vehicle can be operated over 500 km with dual Hel and shows 85% of diesel substitution ratio. Driveability is similar with but passing acceleration. It will be improved by calibration process. Test engine was set up for investigating power output, thermal efficiency and emission. ND 13-mode tests were performed for the test cycle. The emission result of dual fuel meets K2006 regulation and the engine performance of dual fuel engine was equivalent to the performance of diesel engine.

  • PDF

Study on the Design Method Development of Crash Cushion Using Single Degree of Freedom (단자유도계를 이용한 충격흡수시설의 설계법 개발)

  • Joo, Jae-Woong;Kim, Ki-Jung;Jang, Dae-Young;Son, Seung-Neo
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.91-100
    • /
    • 2007
  • The most important thing for driver's safety on the road is equipment of crash cushion as a vehicle protection safety facility. But development of crash cushion is defective because there's no rational and reality way of design. And also without an alternative plan, it rely on crash test hereby it suffers a great economic loss and wastes time. This study that uses data of cash test proves the suitability of single degree of freedom which considers the safety of passengers about three-dimensional complicated Crash Analysis. As the study analyzes the conduct of crash cushion, it want to develop the effective method of design on Single Degree of Freedom Crash Cushion. And it presents the way of crash cushion design through making a crash analysis model with single degree of freedom. To verify the validness of the crash cushion plan, with single degree of freedom plan, we make the level CC2 crash cushion and execute the crash test. A performance test brings satisfied result and a plan of single degree of freedom crash cushion is proven as an one of the way to be a good system which can design crash cushion.

  • PDF

A study on the improvement of a suspension system adopting a semiactive on-off damper (반능동 단속형 감쇠기를 이용한 현가장치 개선에 관한 연구)

  • 최성배;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.959-967
    • /
    • 1988
  • In this paper, 2-DOF vehicle suspension system with a semiactive on-off damper was studied for improving the ride comfort. It is known that a nonlinear hydraulic damper, which generates force proportional to the square of the relative velocity, can describe the actual fluid resisting type damper more properly than the traditional viscous damping model. On the other hand, hydraulic damper adoption in analysis makes the system nonlinear and causes difficulties to get the system response. In this work, time domain direct integration method was used to calculate system displacement and acceleration. first of all, the response of the suspension system experiencing a given road profile was optimized by Lagrangian multiplier method within the range of given damping coefficients. The appropriate on-loaf damping values were obtained by averaging the already calculated optimum damping coefficients from Lagrangian techniques. The criterion to control the on-off mechanism was determined by examining the suspension efficiency. It was found that the best out of practically applicable criteria is following the sign (positive and negative) of the multiplication of relative displacement and velocity. Judging from the theoretical calculations, it was proved that the semiactive on-off damper can increase suspension efficiency as much as 8-11% in object function.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Automotive Safety and Convenience Service Using Bluetooth and Smartwatch (블루투스와 스마트워치를 활용한 자동차 안전 및 편의 서비스)

  • Park, Han-Saem;Im, Noh-Gan;Cho, Ji-Yeon;Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1188-1191
    • /
    • 2020
  • In this paper, automotive safety and convenience service is proposed based on bluetooth and smart watch. The proposed service performs accident detection, kidnapping detection, kid-left-alone-in-car detection, parking location recording, and smart key function. Conventional smartphone services often fails to precisely recognize accident and kidnapping situations since smartphone is located on the dashboard or in the bag. On the contrary, smartwatch recognizes accident and kidnapping situations more precisely since it is always worn on the wrist with hearbeat monitoring. The proposed service recognise various situations around drives and passengers using acceleration sensor, GPS sensor, heartbeat sensor and bluetooth link status. It also performs accident notice, sound recording, and other necessary actions. It also performs door opening, door closing, hazard light flickering, and other necessary actions using OBD-II connection to the vehicle.

Numerical performance assessment of Tuned Mass Dampers to mitigate traffic-induced vibrations of a steel box-girder bridge

  • Bayat, Elyas;Bayat, Meysam;Hafezzadeh, Raheb
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.125-134
    • /
    • 2021
  • In this paper, the effects of Tuned Mass dampers (TMDs) on the reduction of the vertical vibrations of a real horizontally curved steel box-girder bridge due to different traffic loads are numerically investigated. The performance of TMDs to reduce the bridge vibrations can be affected by the parameters such as dynamic characteristics of TMDs, the location of TMDs, the speed and weight of vehicles. In the first part of this study, the effects of mass ratio, damping percentage, frequency ratio, and location of TMDs on the performance of TMDs to decrease vertical vibrations of different sections of bridge deck are evaluated. In the second part, the performance of TMD is investigated for different speeds and weights of traffic loads. Results show that the mass ratio of TMDs is the more effective parameter in reducing imposed vertical vibration in comparison with the damping ratio. Furthermore, it is found that TMD is very sensitive to its tuned frequency, i.e., with a little deviation from a suitable frequency, the expected performance of TMD significantly decreased. TMDs have a positive and considerable performance at certain vehicle speeds and this performance declines when the weight of traffic loads is increased. Besides, the results reveal that the highest impact of TMD on the reduction of the vertical vibrations is when free vibrations occur for the bridge deck. In that case, maximum reductions of 24% and 59% are reported in the vertical acceleration of the bridge deck for the forced and free vibration amplitudes, respectively. The maximum reduction of 13% is also obtained for the maximum displacement of the bridge deck. The results are mainly related to the resonance condition.