• Title/Summary/Keyword: Vehicle Wheel

Search Result 1,003, Processing Time 0.031 seconds

STUDY ABOUT BRAKE SHOE APPLIED RAILWAY VEHICLE IN KOREA (국내 철도차량용 제륜자 특성에 관한 연구)

  • Yang, Bang-Sub;Kim, Chul-Gun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.78-81
    • /
    • 2007
  • In this study, brake shoe applied railway vehicle in korea is investigated and estimated a point of view effecting on wheel wear and brake performance, vehicle performance. The property and shape of brake shoe on domestic and foreign vehicle is compared and estimated and brake shoe applied railway vehicle in korea is recommended.

  • PDF

The Running Control for the Mobile Vehicle

  • Sugisaka, Masanori;Adachi, Takuya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.491-491
    • /
    • 2000
  • In this paper, we report the results about the rotational control count on DC motor to drive the mobile vehicle as a first step of the research for the realization of the mobile vehicle with the artificial brain. First of all, we introduce the configuration of the mobile vehicle. This mobile vehicle has one CCD camera driven by a rear wheel. Secondly we show the control methods. This research is adopted the various controls. Finally we report the experimental methods and results and we describe the conclusion of this research.

  • PDF

A Study on the Development of Highly Efficient Sintered Brake Shoe in Railway Vehicle (철도 차량용 고성능 소결제륜자 개발에 관한 연구)

  • Ko, Kwang-Nam;Kim, Sung-Kwon;Kim, Sang-Ho;Kwon, Seok-Jin;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.986-993
    • /
    • 2011
  • The role of brake is safely to transport passenger & cargo and stop vehicles at emergency in railway vehicle. Brake system reduces the speed by control command of electricity or air. mechanical methods to perform brake are disk brake & tread brake. This study targeted development of highly efficient sintered alloy brake shoe in railway vehicle whose high frictional coefficient, wear resistance, compatibility of the existing tread brake shoe & minimization of wheel's thermal damage and performed development of friction material's formulation, analysis of pressure distribution in wheel tread & brake shoe, optimum form design through analysis of heat flow.

  • PDF

Dynamic Modeling and Analysis of a High Mobility Tracked Vehicle (고속 궤도차량의 동역학적 모델링 및 해석)

  • Lee, Byung-Hoon;Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1486-1493
    • /
    • 2006
  • This paper presents a dynamic model of a high mobility tracked vehicle composed of rigid bodies. Track is modeled as an extensible cable and the track tension between the sprocket and roller is calculated by the catenary equation. The ground force acting on a road wheel is calculated by the Bekker's pressure-sinkage relationship using the segmented wheel model. System equations of motion and constraint acceleration equations are derived in the joint coordinate space using the velocity transformation method.

A Study on the Vibratory Characteristics of the Stack in Fuel Cell Vehicle at Driving Condition (연료전지 차량 주행시 스택의 진동 특성 연구)

  • Ju, Hyung-Jun;Kim, Gi-Hoon;Park, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.50-55
    • /
    • 2010
  • In recent years, the development of fuel cell vehicles has further accelerated because of environmental problem and petroleum resources shortage. The fuel cell vehicles have the stack which converts fuel to electricity. The stack is usually mounted by bush to isolate the vibration of chassis and body. This paper analyzed the vibratory characteristics of stack and chassis, body system. The wheel forces of fuel cell vehicle are measured to estimate the road load data. And the paths of vibration from wheel to stack are analyzed by CAE. According to the test and CAE results, the improvement of stack vibration are evaluated.

Analytical Model Development of Longitudinal Railway Vehicle (철도차량의 종방향 통합해석모델 검토 및 개발)

  • Kwak Jae-Ho;Choi Kyung-Jin;Shin Yu-Jeong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.383-386
    • /
    • 2005
  • An integrated analytical model which should have essential dynamics on the longitudinal railway vehicle is developed. The model consists of translational movement, rotational movement, brake actuator, adhesion force between rail and wheel, and brake friction force between wheel and pad. Thus, during the deceleration for stopping, a feedback controller controlling the brake cylinder pressure is designed to improve ride quality and to release friction problems. Through the developed model, the feasibility of controlling the cylinder pressure is verified for the better performances during braking.

  • PDF

Stochastic space vibration analysis of a train-bridge coupling system

  • Li, Xiaozhen;Zhu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • The Pseudo-Excitation Method (PEM) is applied to study the stochastic space vibration responses of train-bridge coupling system. Each vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension system possessing 15 degrees-of- freedom. The bridge is modeled as a spatial beam element, and the track irregularity is assumed to be a uniform random process. The motion equations of the vehicle system are established based on the d'Alembertian principle, and the motion equations of the bridge system are established based on the Hamilton variational principle. Separate iteration is applied in the solution of equations. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method. The PSD of the 3-span simply-supported girder bridge responses, vehicle responses and wheel/rail forces are obtained. Based on the $3{\sigma}$ rule for Gaussian stochastic processes, the maximum responses of the coupling system are suggested.

Sliding Mode Control of the Vehicle ABS with a Disturbance Observer for Model Uncertainties (모델 불확실성에 대한 외란 관측기를 가진 차량 ABS의 슬라이딩 모드 제어)

  • Hwang Jin-Kwon;Song Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.44-51
    • /
    • 2006
  • This paper addresses sliding mode control of the anti-lock braking system (ABS) with a disturbance observer for model uncertainties such as vehicle parameter variation, un-modeled dynamics, and external disturbances. By using a nominal vehicle model, a sliding mode controller is designed to achieve a desired wheel slip ratio for ABS control. To compensate the model uncertainties, a disturbance observer is introduced with the help of a transfer function of a hydraulic brake dynamics. A proposed sliding mode controller with a disturbance observer is evaluated through simulations for model uncertainties. The simulation results show that the disturbance observer can enhance performances of sliding mode control for ABS.

A Study of Dynamic Characteristic Analysis Algorithm for Running Safety Assessment (주행안전성 평가를 위한 동특성 해석알고리즘 연구)

  • Chung J.D.;Han S.Y.;Chun H.J.;Pyun J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.411-412
    • /
    • 2006
  • It is very difficult to analyze the dynamic characteristic because railway vehicle is a very complex system which are connected various mass element with railway vehicle system. To realize and analyze actual phenomenon has restriction that usual commercial software calculates creep force under creep theory about wheel-rail contact mechanism as basic analyzing, and approach about contact point are based on two dimensional non-linear contact theory and simplified Hertzian contact which considers just displacement change on the YZ plain. Therefore, to solve these problems there should be a new approach difference with existing one. In this research, a new algorithm for finding wheel-rail contact position, calculation method of contact force and applied force will be presented.

  • PDF

A Study on the Performance Improvement and Simplification of the Modulator for Vehicle Stability Control System (차량 안정성 제어 시스템의 모듈레이터 성능개선 및 단순화에 관한 연구)

  • 이종찬;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.84-93
    • /
    • 2004
  • This study carries out the performance improvement and simplification of hydraulic modulator that plays an important role in vehicle stability control systems. The mathematical models for each component of a modulator, such as pump, wheel cylinder, check and solenoid valve, accumulator, damper are derived in detail. All the mathematical models are combined to form a modulator system and implemented through a computer program, which can be controlled by a user friendly GUI. To verity the simulation, comparison between simulation and experiments has been made. After the verification of the validity of the simulation, the effects of the design parameters of the modulator on the wheel cylinder pressure is investigated. The results show that the modulator without MPA has advantage in early time pressure rise rate, and it can be simplified.