• Title/Summary/Keyword: Vehicle Wheel

Search Result 1,003, Processing Time 0.032 seconds

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.

Development of Driving Control Algorithm for Vehicle Maneuverability Performance and Lateral Stability of 4WD Electric Vehicle (4WD 전기 차량의 선회 성능 및 횡방향 안정성 향상을 위한 주행 제어 알고리즘 개발)

  • Seo, Jongsang;Yi, Kyongsu;Kang, Juyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • This paper describes development of 4 Wheel Drive (4WD) Electric Vehicle (EV) based driving control algorithm for severe driving situation such as icy road or disturbance. The proposed control algorithm consists three parts : a supervisory controller, an upper-level controller and optimal torque vectoring controller. The supervisory controller determines desired dynamics with cornering stiffness estimator using recursive least square. The upper-level controller determines longitudinal force and yaw moment using sliding mode control. The yaw moment, particularly, is calculated by integration of a side-slip angle and yaw rate for the performance and robustness benefits. The optimal torque vectoring controller determines the optimal torques each wheel using control allocation method. The numerical simulation studies have been conducted to evaluated the proposed driving control algorithm. It has been shown from simulation studies that vehicle maneuverability and lateral stability performance can be significantly improved by the proposed driving controller in severe driving situations.

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • 송하종;정일호;이수호;박태원;박중경;이형;조동협;김혁;이경목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded in rubber or plastic material. Especially, urethane is high in mechanical strength and anti-abrasive. Hereby, an urethane coated aluminum wheel is used for supporting of OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety for applied maximum dynamic load on a urethane wheel needs to be carefully examined while driving. Therefore, we have performed the dynamic simulation on the OHT vehicle model. Although the area definition of applied load can be obtained from the previous study of Hertzian and Non-Hertzian contact force model when having exact properties of contact material, static analysis is simulated, since the proper material properties of urethane have not been guaranteed, after we have performed the actual contact area test for each load. In case of this study, the method of distributing load for each node is included. Finally, in comparison with result of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we have verified the safety of the wheel. After all, we have performed a mode analysis using the obtained material properties. With the result, we have the reliable finite element model.

  • PDF

Development of Integrated Control Logic of Wheel Motor Drive Electric Bus considering Stability and Driving Performance (휠 모터 구동 전기 버스의 차량 안정성 및 주행 성능을 고려한 통합 제어 로직 개발)

  • Jeong, Jongryeol;Choi, Jongdae;Shin, Changwoo;Lee, Daeheung;Lim, Wonsik;Park, Yeong-Il;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.40-48
    • /
    • 2013
  • Recently, many types of electric vehicles including a heavy duty vehicle have been developed and released because of the better fuel economy and less gas products. In this study, research about an electric bus which utilizes the wheel motor drive system was conducted. The wheel motor is a motor connected to the wheel directly only with a simple gear so that the developer can utilize the space efficiently and the whole system efficiency will be better because of simple structure. However, because it is different from former types of vehicles which use the differential gear, the development of the integrated control logic is required in order to meet the vehicle stability and driving performance. The developed control logic is composed with direct yaw moment control, regenerative braking control and slip control logics. It is compared to the control logics which does not consist of direct yaw moment control and slip control when the vehicle is exposed in tough situations. For the unification of the control logic, a few maps were developed and applied to determine the output torque of each motor according to the driving status. As a result, it is shown that the developed control logic is more safe and well follow the target speed than the other control logic applied simulations.

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • Song Ha Jong;Jong Il Ho;Yoon Ji Won;Jun Kab Jin;Park Joong Kyung;Lee Hyung;Park Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.114-120
    • /
    • 2005
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded with rubber or plastic material. In particular, urethane is high in mechanical strength and anti-abrasive. Hereby, a urethane coated aluminum wheel is used to support of the OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety fur applied maximum dynamic load on a urethane wheel must be examined carefully while driving. Therefore, we performed a dynamic simulation on the OHT vehicle model and we determined the driving load. The area definition of applied load may be obtained from the previous study of Hertzian and Non-Hertzian contact force model having exact properties of contact material. But the static analysis is simulated after we have performed the actual contact area test for each load since the proper material properties of urethane have not been guaranteed. In this study, the method of distributing loads for each node is included. Finally, in coMParison with the results of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we verified the safety of the wheel. Finally, we performed a mode analysis using the obtained material properties. With these results, we presented a reliable finite element model.

A Method for Driver Recognition and Steering Wheel Turning Direction Estimation Using Smartwatches (스마트워치를 이용한 자동차운전자 구분 및 핸들의 회전 방향 인지 기법)

  • Huh, Joon;Choi, Jaehyuk
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.844-851
    • /
    • 2019
  • As wearable technology is becoming more common and a part of our lives, there have been many efforts to offer various smart services with wearable devices, such as motion recognition, safety of driving, and so on. In this paper, we present a method that exploits the 9-axis inertial sensors embedded in a smartwatch to identify whether the user is a vehicle driver or not and to estimate the steering wheel turning direction in the vehicle. The system consists of three components: (i) position recognition, (ii) driver recognition, and (iii) steering-wheel turning detection components. We have developed a prototype system for detecting user's motion with Arduino boards and IMU sensors. Our experiments show high accuracy in recognizing the driver and in estimating the wheel rotation angle. The average experimental error was $11.77^{\circ}$ which is small enough to perceiver the turning direction of steering-wheel.

A Study on the Running Characteristic by Rail cant variation (레일 캔트 변화에 따른 주행특성에 관한 연구)

  • Eom, Beom-Gyu;Kim, Young-Gyu;Lee, Seung-Il;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1142-1147
    • /
    • 2011
  • The rail cant produces a wider bearing area between the wheel and the rail by moving the wheel-rail contact area away from the gauge towards the centre of the railhead, thus improving the wear pattern of the railhead and wheel treads. It is essential to keep the rail cant within the allowable range to ensure optimum track geometry. Neglecting the rail cant geometrical parameters in a track quality evaluation can cause safety of railway vehicle and serviceability problems. In this paper, we examined the effect of the rail cant in general geometry state of the railway track using VI-Rail and analyzed running safety when the railway vehicle passing through curves depending on change of the rail cant and running speed.

  • PDF

Force-reflecting electronic power steering system using fuzzy logic (퍼지 로직을 이용한 힘반사형 전동 조향 장치)

  • 박창선;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.353-356
    • /
    • 1997
  • Vehicle steering system determines the direction of a vehicle. A manual steering system consists of mechanical connections between the steering wheel and tires. Recent power steering system adds an actuator to help a driver to steer easily at low speed. However, at front collision, the driver can be injured by steering shaft and the power steering pump decreases the engine power. To solve these problems, electronic power steering system which connects the steering wheel and tires with electronic connection is proposed, that has advantages such as decrease of engine load and increase of driver safety reactive. Since the ratio between driver's steering torque and steering torque of tires can be controlled freely, the torque which is delivered from the road to the driver through tires and steering wheel can be reshaped to make the driver feel comfortable. In this paper, the ratio of delivering steering torque and the magnitude of force to be delivered from road to driver has been controlled using fuzzy controller, and it's effectiveness has been shown through simulation results.

  • PDF

A Study on the Characteristics of Subway Noise in Curved Line (지하철 곡선부소음의 특성에 관한 연구)

  • You, Won-Hee;Koh, Hyo-In;Park, Joon-Hyuk;Jo, Jun-Ho;Yang, Chil-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.773-778
    • /
    • 2008
  • The subway noise in curved line is affected not only by rail condition but also wheel condition and dynamic characteristics. The railway curving noise can be divided into 2 categories. The first is noise depending on the vehicle speed, and the second is the one independent on vehicle speed. In this study the noises were reviewed by using eigen-mode of wheel and waterfall plot which shows noise level in time-frequency domain. And also those were reviewed in viewpoint of stick-slip noise and wheel flange contact noise.

  • PDF

Antl-Lock Brake System Control for Buses Based on Fuzzy Logic and a Sliding-Mode Observer

  • Park, Jong-Hyeon;Kim, Dong-Hee;Kim, Yong-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1398-1407
    • /
    • 2001
  • In this paper an anti-lock brake system (ABS) for commercial buses is proposed based on a fuzzy-logic controller and a sliding-mode observer of the vehicle speed. The brake controller generates pulse width modulated (PWM) control inputs to the solenoid valve of each brake, as a function of the estimated wheel slip ratio. PWM control inputs at the brakes significantly reduce chattering in the brake system compared with conventional on-off control inputs. The sliding-mode observer estimates the vehicle speed with measurements of wheel speed, which is then sed to compute the wheel slip ratio. The effectiveness of the proposed control algorithm is validated by a series of computer simulations of bus driving, where the 14-DOF bus model is used.

  • PDF