• Title/Summary/Keyword: Vehicle Trajectory

Search Result 390, Processing Time 0.018 seconds

Vehicle Trajectory Control using Fuzzy Logic Controller (퍼지논리제어기를 이용한 차량의 궤적제어)

  • 이승종;조현욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

The Driving Trajectory Measurement and Analysis Techniques using Conventional GPS Sensor for the Military Operation Environments (군운용 환경에 적합한 GPS 센서기반 주행궤적 측정 및 분석 기술)

  • Jung, Ilgyu;Ryu, Chiyoung;Kim, Sangyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.774-780
    • /
    • 2017
  • The techniques for driving trajectory calculation and driving trajectory distribution calculation are proposed to analyze the durability of ground vehicles effectively. To achieve this aim, the driving trajectory of a vehicle and the driving trajectory distribution of that are needed, in addition to road profile. The road profiles can be measured by a profilometer but a driving trajectory of a vehicle cannot be acquired effectively due to a large position error from a conventional GPS sensor. Therefore two techniques are proposed to reduce the position error of a vehicle and achieve the distribution of driving trajectory of that. The driving trajectory calculation technique produces relative positions by using the velocity, time and heading of a vehicle. The driving trajectory distribution calculation technique produces distributions of the driving trajectory by using axis transformation, estimating reference line, dividing sectors and plotting a histogram of the sectors. As a results of this study, we can achieve the considerably accurate driving trajectory and driving trajectory distribution of a vehicle.

Vehicle - to - Vehicle Distance Control using a Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 차간 거리 제어)

  • 조상민;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.123-129
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method far application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary intelligent cruise control algorithm.

Vehicle Stop and Go Cruise Control using a Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 차량 정지/서행 순항 제어)

  • 조상민;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.206-213
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method for application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary vehicle stop and go cruise control systems which makes the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle.

Quadrotor path planning using A* search algorithm and minimum snap trajectory generation

  • Hong, Youkyung;Kim, Suseong;Kim, Yookyung;Cha, Jihun
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1013-1023
    • /
    • 2021
  • In this study, we propose a practical path planning method that combines the A* search algorithm and minimum snap trajectory generation. The A* search algorithm determines a set of waypoints to avoid collisions with surrounding obstacles from a starting to a destination point. Only essential waypoints (waypoints necessary to generate smooth trajectories) are extracted from the waypoints determined by the A* search algorithm, and an appropriate time between two adjacent waypoints is allocated. The waypoints so determined are connected by a smooth minimum snap trajectory, a dynamically executable trajectory for the quadrotor. If the generated trajectory is invalid, we methodically determine when intermediate waypoints are needed and how to insert the points to modify the trajectory. We verified the performance of the proposed method by various simulation experiments and a real-world experiment in a forested outdoor environment.

Method for Maneuver Monitoring with Vehicle Trajectory Reconstruction (차량 궤적 추정을 통한 운행 안전 모니터링 기법)

  • Heo, Geun Sub;Lee, Sang Ryong;Shin, Jin-Ho;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1065-1071
    • /
    • 2012
  • In this paper, we proposed a method for vehicle monitoring with trajectory reconstruction. For safety, it is important to monitor the driving habit of driver. Every year, many accidents occur due to the reckless driving of the driver. Continuous monitoring of the status of commercial vehicles is needed for safety through the entire path from start point to the destination. To monitor the reckless driving, we try to monitor the trajectory of the vehicle by using vehicle's lateral acceleration data. Compared with steering angle and lateral acceleration, these resemble each other. So, we find the relationship of steering angle and acceleration, and find the global direction of vehicle. We find the position of non-GPS section with EKF (External Kalman Filter) and reconstruct the whole trajectory during vehicle driving.

Vehicle Trajectory-Based Data Forwarding Schemes for Vehicular Ad Hoc Networks

  • Jeong, Jae-Hoon Paul
    • Information and Communications Magazine
    • /
    • v.29 no.8
    • /
    • pp.72-84
    • /
    • 2012
  • This paper introduces three vehicle trajectory-based data forwarding schemes, tailored for vehicular ad hoc networks. Nowadays GPS-based navigation systems are popularly used for providing efficient driving paths for drivers. With the driving paths called vehicle trajectories, we can make data forwarding schemes more efficient, considering the micro-scoped mobility of individual vehicles in road networks as well as the macro-scoped mobility of vehicular traffic statistics. This paper shows why the vehicle trajectory is a key ingredient in the design of the vehicle-to-infrastructure, infrastructure-to-vehicle, and vehicle-to-vehicle data forwarding schemes over multihop. Through the mathematical formulation, the key design techniques are shown for three forwarding schemes based on vehicle trajectory, compared with a state-of- the- art data forwarding scheme based on only vehicular traffic statistics.

Unmanned Navigation of Vehicle Using the Ultrasonic Satellite System (초음파 위치인식 시스템을 이용한 차량의 무인주행)

  • Kim, Su-Yong;Lee, Jung-Min;Lee, Dong-Hwal;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.875-882
    • /
    • 2007
  • In order for a vehicle to follow a predetermined trajectory accurately, its position must be estimated accurately and reliably. In this thesis, we propose trajectory tracking control methods for unmanned vehicle and a positioning system using ultrasonic wave. The positioning problem is an important part of control problem for unmanned navigation of a vehicle. Dead Reckoning is widely used for positioning of vehicle. However this method has problems because it accumulates estimation errors. We propose a new method to increase the accuracy of position estimation using the Ultrasonic Satellite System (USAT). It is shown that we will be able to estimate the position of vehicle precisely, in which errors are not accumulated. And proposed trajectory tracking control methods include both a new path planning method and a lateral control method for vehicle. The experimental results show that the proposed methods enables exact vehicle trajectory tracking even under various environmental factors.

A Study on Synthetic Flight Vehicle Trajectory Data Generation Using Time-series Generative Adversarial Network and Its Application to Trajectory Prediction of Flight Vehicles (시계열 생성적 적대 신경망을 이용한 비행체 궤적 합성 데이터 생성 및 비행체 궤적 예측에서의 활용에 관한 연구)

  • Park, In Hee;Lee, Chang Jin;Jung, Chanho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.766-769
    • /
    • 2021
  • In order to perform tasks such as design, control, optimization, and prediction of flight vehicle trajectories based on machine learning techniques including deep learning, a certain amount of flight vehicle trajectory data is required. However, there are cases in which it is difficult to secure more than a certain amount of flight vehicle trajectory data for various reasons. In such cases, synthetic data generation could be one way to make machine learning possible. In this paper, to explore this possibility, we generated and evaluated synthetic flight vehicle trajectory data using time-series generative adversarial neural network. In addition, various ablation studies (comparative experiments) were performed to explore the possibility of using synthetic data in the aircraft trajectory prediction task. The experimental results presented in this paper are expected to be of practical help to researchers who want to conduct research on the possibility of using synthetic data in the generation of synthetic flight vehicle trajectory data and the work related to flight vehicle trajectories.

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.