• 제목/요약/키워드: Vehicle Suspension System

검색결과 454건 처리시간 0.024초

대차 관성측정 장치에서 궤도틀림 추정을 위한 반복 최소자승법의 적용 (Application of Recursive Least Squares Method to Estimate Rail Irregularities from an Inertial Measurement Unit on a Bogie)

  • 이준석;최성훈;김상수;박춘수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.427-434
    • /
    • 2011
  • This paper is focused on application of recursive least squares method to estimate rail irregularities from the acceleration measurement on an axle-box or a bogie for the rail condition monitoring with in-service high-speed trains. Generally, the rail condition was monitored by a special railway inspection vehicle but the monitoring method needs an expensive measurement system. A monitoring method using accelerometers on an axle-box or a bogie was already proposed in the previous study, and the displacement was successfully estimated from the acceleration data by using Kalman and frequency selective band-pass filters. However, it was found that the displacement included not only the rail irregularities but also phase delay of the applied filters, and effect of suspension of the bogie and conicity of the wheel. To identify the rail irregularities from the estimated displacement, a compensation filter method is proposed. The compensation filters are derived by using recursive least squares method with the estimated displacement as input and the measured rail irregularity as output. The estimated rail irregularities are compared with the true rail irregularity data from the rail inspection system. From the comparison, the proposed method is a useful tool for the measurement of lateral and vertical rail irregularity.

  • PDF

궤도차량의 직진주행시 궤도장력 감지 (Track Tension Monitoring in the Longitudinal Traveling of Tracked Vehicles)

  • 허건수;조병희;서문석;서일성;박동창
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1608-1615
    • /
    • 2000
  • The track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to pre vent the peal-off of tracks from the road wheels, it is required to maintain the optimum track tension throughout the maneuver. However, the track tension cannot be easily measured due to the limitation in the sensor technology, harsh environment, etc. In this paper an indirect track tension monitoring system is developed based on idler assembly models, a geometric relation around the idler, and the tractive force estimated by using the Extended Kalman Filter. The performance of the tension monitoring system is verified with the results obtained from the Multi-Body Dynamics model.

한국형 고속전철의 주행진동 특성에 관한 연구 (A Study on the Dynamic Characteristics on the Test Line for Korean High Speed Train)

  • 김영국;김석원;박찬경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.555-560
    • /
    • 2003
  • Korean High Speed Train(KHST) has been tested on the high speed test line in Osung site of Korea High Speed Rail Construction Authority (KHRC). since it was developed as G7 Project Plan In 2002. This paper introduces the dynamic test devices in KHST and shows the comparison between the results of test and theoretical computing results which derive from the new model for KHST dynamic behavior. Previous computer simulation model for KHST was developed to review wether the vehicle system was satisfied with the dynamic performance requirements during the design procedure. But It should be applied the results of the parts test for suspension elements in order to compare between the results of computation and real test. Using VAMPIRE Program made by AEA Technology in UK. the new model also was modified. This paper shows that the static wheel loads calculated from new model is similar to test results. For test on high speed line, we prepared the test devices for evaluating the dynamic performances. which was consisted of the accelerometers( based on Kisler Co.) and the data aquisition systems (based on National instrument Co.), and test program coded by LabView 6i program. These lest devices and programs are flexible to extension the channels for adding sensors and connect to the ethernet network. The acceleration of car bodies, bogie frames and axle boxes were compared between the results of computation and test at 150km/. This paper shows that the results of test were high in high frequency band range but similar frequency band range. It might be considered that these differences were caused by the test which did not performed at constant speed for comparison analysis. Also. It will be able to understand the differences and make better results through a lot of tests planed in future.

  • PDF

군용 대형트럭의 고유 진동 특성에 관한 연구 (A Study on the Modal Characteristics of a Large-sized Military Truck)

  • 서권희;임현빈;송부근;장헌섭;유웅재;오철조
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.130-137
    • /
    • 2010
  • Due to test facility and specialty, it is physically difficult to conduct the modal tests of large-sized structures such as truck, bus and airplane. So, in case of a large-sized truck, the mode analysis on a full vehicle model comprised of reliable cabin, frame, and deck has been generally performed. However, the reliability of overall vibrational characteristics of the analytic model has not been fairly guaranteed by the testified models of each subsystem owing to the existence of cab suspension and the nonlinear mounting between a chassis frame and a special deck system. In this paper, a method to find out the modal characteristics of a large-sized military truck is presented. New modal test equipment is developed to set the boundary conditions of three military truck variants as close as a free-free condition. And the mode analysis method using coupled structure and dynamic models is established to consider the above-mentioned dynamic non-linearities of the vehicle itself. The usefulness of the suggested method is verified by comparing with the modal test results. Finally, the modal parameters of the final variant are extracted using the proved analytic method.

Atypical Antidepressant Activity of 3,4-Bis(3,4-Dimethoxyphenyl) Furan-2,5-Dione Isolated from Heart Wood of Cedrus deodara, in Rodents

  • Kumar, Nitesh;Dhayabaran, Daniel;Nampoothiri, Madhavan;Nandakumar, Krishnadas;Puratchikody, A.;Lalani, Natasha;Dawood, Karima;Ghosh, Aanesha
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.365-369
    • /
    • 2014
  • Cedrus deodara (Pinaceae) has been used traditionally in Ayurveda for the treatment of central nervous system disorders. 3,4-bis(3,4-dimethoxyphenyl)furan-2,5-dione (BDFD) was isolated from heart wood of Cedrus deodara and was shown to have antiepileptic and anxiolytic activity. Thus, the present study was aimed to explore its anti-depressant effect and to correlate the effect with serotonin and nor adrenaline levels of brain. Albino mice were used as experimental animal. Animals were divided in to three groups; vehicle control, imipramine (30 mg/kg i.p.), BDFD (100 mg/kg i.p.). Tail suspension test (TST) and forced swim test (FST) was performed to evaluate antidepressant effect of BDFD. BDFD (100 mg/kg, i.p.) showed a significant decrease in immobility time when subjected to FST whereas immobility time was not significantly altered in TST. BDFD treatment increased serotonin and noradrenaline levels in the brain which is indicative of BDFD having possible atypical antidepressant action.

다구찌 직교배열법을 이용한 포뮬러 레이스카 전륜 업라이트의 최적설계 (Optimal Design of the Front Upright of Formula Race Car Using Taguchi's Orthogonal Array)

  • 장운근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.112-118
    • /
    • 2013
  • Formula race car is generally recognized as a vehicle which is optimally designed for on-road race track with the regulations of race host bodies. Especially, the uprights of suspension system decisively have effects on the performance of cornering and stability of race car's driving performance, which are very important factors in the design of race car. This paper is a study of optimal upright design of F1800 grade formula race car which are normally used in professional race circuit in Korea. To design optimally the front upright of F1800 formula race car, Taguchi's orthogonal array, which is known for more useful method than full factorial design experimental method in cost and time, is used with CAE method such as FEM analysis. And the result of this paper shows that Taguchi's orthogonal array employed for this optimal design is very useful for designing the front upright of race car by minimizing its weight as well as keeping its safety factor as enough as designer wants in the view of quality, cost and delivery at the early design step.

중형 버스의 브레이크 저더 현상 개선에 대한 해석적 고찰 (Analytical Study in Brake Judder Reduction of Medium Bus)

  • 이계섭;서권희;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.148-156
    • /
    • 2001
  • Brake judder, one of low Sequency vibrations in brake system is determined by the excitation of Brake Torque Variation (BTV). The largest contributor to BTV is disc thickness variation. In this study, the static loads of brake torque at Suspension Mounting Points (SW) are obtained by the quasi-static analysis using DADS. The dynamic loads with frequency of BTV at SW are derived from correlation between forced vibration analysis with static loads and brake test results. And the accelerations at steering wheel were analyzed by forced vibration analysis with dynamic loads using commercial finite element program MSC/NASTRAN so that vibration characteristics of vehicle due to brake judder were investigated. Reliability of analysis results was verified through comparing the brake test results. Also, a parametric study with natural frequencies of frame, such as the 1st torsional mode and 1st bending mode, was conducted to reduce vibration amplitudes. As a result we could detect frame natural frequency conditions to improve vibration characteristics and obtained the frame model to reduce vibration amplitude.

  • PDF

자동차 懸架裝置의 최적설계에 관한 연구 (A study on the optimal design of automobile suspension system)

  • 김호룡;최섭
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.437-443
    • /
    • 1987
  • 본 연구에서는 승차감을 향상시키기 위해 원전석의 진동을 고려한 평면 5자 유도 모델을 사용하여 확정적 노면과 무작위 노면에 대한 시간영역, 주파수영역 해석 과 이에 따른 최적설계를 수행하였다. 최적설계시 목적함수는 주파수영역에서의 운 전석의 가속도 PSD를 구하여 여진동력(absorbed power)을 계산한 다음, 이를 최소화하 면서 차체의 안정성을 제한조건으로 하였다. 또 최적설계의 결과인 운전석의 가속도 rms값과 ISO경계값을 비교하였다. 시간영역에서는 결과를 해당된 운전석의 최대절대 가속도 및 상대변위에 대한 한계치와 비교하였다. 한편으로는 실제 노면 형상을 컴 퓨터로 시뮬레이션하고, 속도에 따른 최적치들 중에서 전체최적치 결정법을 제시하였 다.

허브스페이스의 구조적 안전성 해석에 대한 연구 (A Study on Structural Safety Analysis of Hub Space)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.352-359
    • /
    • 2015
  • This study investigates the analysis result of structure and fatigue due to the models of the hub space with bolt joint at wheel and the existence or nonexistence of hub ring as the part of suspension system of vehicle. As the static analysis result, the structural vulnerability can be found at hub bolt and the center of wheel at three models. Model 2 and 3 have nearly same deformation and model 1 can be endured at the least load among three models. As the fatigue analysis result, fatigue lives of three models are same at the severest load of SAE bracket history. As many screw threads of weak bolts are jointed in case of model 1, model 1 is shown to be the weakest at fatigue damage among three models. By the result of this study, model 1 with bolt joint becomes most weakest among three models. As model 2 with no hub ring and model 3 with hub ring have the nearly same states of analysis results, hub ring is shown to have no influence on the safety of automotive driving.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.