• Title/Summary/Keyword: Vehicle Suspension

Search Result 704, Processing Time 0.024 seconds

Durability Analysis Technique of Automotive Suspension System Considering Dynamic Characteristics (동적 특성을 고려한 차량 현가 시스템의 내구해석 기법)

  • 한우섭;이혁재;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.336-341
    • /
    • 2003
  • In this paper, resonance durability analysis technique is presented for the fatigue life assessment considering dynamic effect of a vehicle system. In the resonance durability analysis, the frequency response and the dynamic load on frequency domain are used. Multi-body dynamic analysis, finite element analysis, and fatigue life prediction method are applied for the virtual durability assessment. To obtain the frequency response and the dynamic load, the computer simulations running over typical pothole and Belgian road are carried out by utilizing vehicle dynamic model. The durability estimations on the rear suspension system of the passenger car are performed by using the presented technique and compared with the quasi-static durability analysis. The study shows that the fatigue life considering resonant frequency of vehicle system can be effectively estimated in early design stage.

  • PDF

Vehicle Suspension Control Using an MR Damper of a Bouc-Wen Model Obtained from Experimental Studies (실험적으로 구한 MR 댐퍼의 개선된 Bouc-Wen 모델을 이용한 자동차 서스펜션 제어)

  • Jeon, Hyeong-Jin;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.151-157
    • /
    • 2010
  • This paper presents the modelling of an MR damper system through extensive experimental studies. The hysteresis of the MR damper is modelled by using the improved Bouc-wen model. A test bed for experimental studies of measuring parameters of the MR damper is designed and implemented. Based on the experimental data, the Bouc-Wen Model is modified for the MR damper system. To check the modelling property, a vehicle suspension system is controlled using a PID controller for the verification of the MR damper model.

Expriment of the Vertical Vibration for Effect of the Parameter of Stiffness Ratio of the Small Scale Passenger Vehicle (여객차량 현가장치의 강성비 변화에 의한 진동 실험)

  • 최경진;장동욱;권영필;김완두
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1110-1115
    • /
    • 2002
  • The purpose of this study is to analyze the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type passenger vehicle. According to the results of simulation and the small scale vehicle test. Optimal condition was obtained for the stiffness ratio of the primary spring and secondary spring of the suspension system. When the stiffness ratio was Increased, the vortical vibration was increased on the car body for empty and weight car. The result of this study are stable to use of the optimum parameter of the ride duality of KT-23 type vehicle. Also, it is usefull to development of full scale vehicle dynamomer

  • PDF

Development of a Real-Time Vehicle Dynamic Simulation Software (실시간 차량 동역학 시뮬레이션 S/W 개발)

  • Choi, G.J.;Lee, K.H.;Yoo, Y.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.30-37
    • /
    • 1995
  • In this research a real time vehicle dynamic simulation software, to be used on real time vehicle simulators, is developed using relative coordinates and suspension super-element concept. Accuracy of the software is verified through comparisons of simulation results with those of a commercial mechanical system dynamic analysis package. It is demonstrated that real time simulation on a workstation with a 15 D.O.F. vehicle model is possible.

  • PDF

A Study on the Effects of the Flexibilities of Suspension System of a Vehicle for Handling Performance (자동차 현가장치의 강성이 조종안정성에 미치는 영향에 관한 연구)

  • 송성재;문홍기;조병관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.186-197
    • /
    • 1998
  • An analysis of handling performance including the compliance effects is performed. Using the primitive design data of suspension systems, a kinematic model and the three kinds of compliance models are developed. The wheel alignments curves are obtained with the multibody dynamic analysis program ADAMS. The compliance effects of each model are discussed. Since the proposed analysis only requires the raw design data, the better prediction of wheel behaviors is possible in suspension design stage.

  • PDF

Shimmy Analysis Program Development of Steering System for a Passenger Car (승용차 조향계의 시미해석 프로그램 개발)

  • Park, S.K.;Song, S.K.;Lee, Y.H.;Song, K.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-70
    • /
    • 2000
  • The shimmy phenomenon, or the radial vibration of steering wheel, happens frequently at a high speed, complicated with suspension system, steering system, vehicle body, engine, transmission and tire. In this study, the suspension system and steering system are modeled by the reference of vehicle body design coordinates(T.L.H), the coordinate system usually used by passenger car maker. In addition, the theoretical results from numerical method have been investigated and compared with the experimental ones by the correlating analysis between the tire and sub-system. The steering and suspension system modeled for the numerical analysis are both independent type. This study developed an analysis program which could forecast the shimmy level in advance by the variation of properties in each system and the change in design of new model.

  • PDF

Sweet Area Determination by Performance Sensitivity Analysis for an Automotive Vehicle Suspension (자동차용 현가장치의 성능감도해석에 의한 안정승차영역의 결정)

  • Park, Ho;Hahn, Chang-Su;Kim, Byeong-Woo;Kim, Dong-Gyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2003
  • Using a quarter car model, an analytic method for performance estimation of a vehicle suspension system with respect to frequency response, RMS response and performance index is presented. From frequency response function, compromization of response performance to the whole frequency range is verified and from RMS response and performance index, sensitivity of ride md handling characteristics are examined. Using a full car model, sweet area(stable ride area) are determined and performance sensitivity is estimated according to the change of feedback gains. In order to esimate the output sensitivity, response we is displayed using a 3-dimensional contour plot. Design data n suggested for optimal design parameter esimation, which maximize the performance of the given suspension system.

Fuzzy Skyhook Control of A Semi-active Suspension System

  • Cho Jeong-Mok;Jung Tae-Geun;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2006
  • In the recent years, the development of computer-controlled suspension dampers and actuators has improved the trade-off between the vehicle handling and ride comfort, and has led to the development of various damper control policies. The skyhook control is an effective control strategy for suppressing vehicle vibration. In this study, a fuzzy skyhook control is proposed and tuned by a genetic algorithm to improve ride comfort. The proposed fuzzy skyhook control is applied to a quarter-car model in order to compare its performance with continuous skyhook suspensions. To obtain optimized fuzzy skyhook control, scale factors and in-out membership functions are tuned by a genetic algorithm. The simulation results show that the fuzzy skyhook control offers more effective suspension performance over the continuous skyhook control.

Design of an Active Suspension Controller with Simple Vehicle Models (단순 차량 모델을 이용한 능동 현가장치 제어기 설계)

  • Yim, Seongjin;Jeong, Jinhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

Vehicle/bridge interactions of a rail suspension bridge considering support movements

  • Yau, J.D.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.263-276
    • /
    • 2009
  • This paper is intended to investigate interaction response of a train running over a suspension bridge undergoing support settlements. The suspension bridge is modeled as a single-span suspended beam with hinged ends and the train as successive moving oscillators with identical properties. To conduct this dynamic problem with non-homogeneous boundary conditions, this study first divides the total response of the suspended beam into two parts: the static and dynamic responses. Then, the coupled equations of motion for the suspended beam carrying multiple moving oscillators are transformed into a set of nonlinearly coupled generalized equations by Galerkin's method, and solved using the Newmark method with an incremental-iterative procedure including the three phases: predictor, corrector, and equilibrium-checking. Numerical investigations demonstrate that the present iterative technique is available in dealing with the dynamic interaction problem of vehicle/bridge coupling system and that the differential movements of bridge supports will significantly affect the dynamic response of the running vehicles but insignificant influence on the bridge response.