• Title/Summary/Keyword: Vehicle Steering

Search Result 671, Processing Time 0.027 seconds

A Study on the Design and Control Method for Unmanned Ground Vehicle System (무인 자율 주행 차량 시스템 설계 및 제어에 관한 연구)

  • Moon, Hee-Chang;Park, Myung-Wook;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.446-455
    • /
    • 2010
  • The research presented covers the design and control method of unmanned ground vehicle (UGV). An electric vehicle is used and is driven by DC motor. The power system on the UGV has been adjusted and actuators have been installed for steering and brake automation. A toggle switch is implemented to easily switch between manual and autonomous states. The UGV state is monitored by a velocity sensor, as well as steering and brake position sensors. An emergency stop device was designed and installed to quickly and safely stop the UGV. Different control methods, including the PID controller, were studied for improved steering responsiveness, and results were confirmed through experimentation. Satisfactory performance was achieved and several possible areas of future research have arisen.

A Study on AES Performance Assessment Protocol based on Car-to-car cut-out Scenario According to front Emergency Obstacle Avoidance of Preceding Vehicle during Highway Driving (고속도로 주행 시 선행차량의 전방 긴급 장애물 회피에 따른 Car-to-Car Cut-out 시나리오 기반 AES 성능평가 방법 연구)

  • Jinseok, Kim;Donghun, Lee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.84-90
    • /
    • 2022
  • With the popularization of autonomous driving technology, safety has emerged as a more important criterion. However, there are no assessment protocol or methods for AES (Autonomous Emergency Steering). So, this study proposes AES assessment protocol and scenario corresponding to collision avoidance Car-to-Car scenario of Euro NCAP in order to prepare for obstacles that appear after the emergency steering of LV (Leading Vehicle) avoiding obstacles in front of. Autoware-based autonomous driving stack is developed to test and simulate scenario in CARLA. Using developed stack, it is confirmed that obstacle avoidance is successfully performed in CARLA, and the AES performance of VUT (Vehicle Under Test) is evaluated by applying the proposed assessment protocol and scenario.

Yaw Moment Control for Modification of Steering Characteristic in Rear-driven Vehicle with Front In-wheel Motors (전륜 인휠모터 후륜구동 차량의 선회 특성 변형을 위한 요모멘트 제어)

  • Cha, Hyunsoo;Joa, Eunhyek;Park, Kwanwoo;Yi, Kyongsu;Park, Jaeyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.6-13
    • /
    • 2021
  • This paper presents yaw moment control for modification of steering characteristic in rear-driven vehicle with front in-wheel motors (IWMs). The proposed control algorithm is designed to modify yaw rate response of the test vehicle. General approach for modification of steering characteristic is to define the desired yaw rate and track the yaw rate. This yaw rate tracking method can cause the chattering problem because of the IWM actuator response. Large overshoot and settling time in IWM torque response can amplify the oscillation in control input and yaw rate. To resolve these problems, open-loop IWM controller for cornering agility was designed to modify the understeer gradient of the vehicle. The proposed algorithm has been investigated via the computer simulations and the vehicle tests. The performance evaluation has been conducted on dry asphalt using E-segment test vehicle. The performance of the proposed algorithm has been compared to general yaw rate tracking algorithm in the vehicle tests. It has been shown that the proposed control law improved the cornering agility without chattering problem.

Design of the Feedback Controller of Direct Satellite Broadcasting Antenna for Vehicle (이동체용 직접위성방송 수신 안테나의 궤환 제어기 설계)

  • Kim, Ki-Yeoul;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.53-56
    • /
    • 2001
  • In this paper we discuss a direct satellite broadcasting system for vehicle. The proposed satellite-steering algorithm and controller based on it are designed for a communication and broadcasting system which uses the Mugungwha satellite. The Mugungwha satellite that the proposed system should steer is a geostationary orbit device. The satellite-steering algorithm computes azimuth and elevation with reference to a stationary point on earth. This is extended to a real satellite steering algorithm that considers position and attitude. Real moving position and attitude are represented by latitude, longitude, roll, pitch and yaw. To apply these five pieces of information to the reference satellite steering algorithm, we introduce Euler's degree coordinates that express independently the rotation of each axis relative to an axis. There are two ways a basic algorithm of the antenna of a vehicle can track and orient to satellite. One way is a feedback loop method for broadcasting gain, while the other is a feedback loop method for position and attitude of a vehicle. In the present paper, we design a controller of satellite broadcasting system for a vehicle using an algorithm that combines the two methods. We performed a simulation and experiment to prove effectiveness.

  • PDF

A Study on Dynamic Characteristic for the Bi-modal Tram with All-Wheel-Steering System (전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구)

  • Lee, Soo-Ho;Moon, Kyung-Ho;Jeon, Young-Ho;Park, Tae-Won;Lee, Jung-Shik;Kim, Duk-Gie
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.99-108
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

  • PDF

Development of an Autonomous Worker-Following Transport Vehicle (I) - Manufacture and indoor experiment of the prototype vehicle - (농작업자 자동 추종 운반차 개발(I) - 시작기 제작 및 실내성능시험 -)

  • 권기영;정성림;강창호;손재룡;한길수;정석현;장익주
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.409-416
    • /
    • 2002
  • This study was conducted to develop a vehicle, leading or following a worker at a certain distance to assist laborious transporting works in greenhouses. A prototype vehicle, which consisted of the rear driving, the front steering and the console units, was designed and tested in the ideal indoor conditions. Results of this study were summarized as following: 1. The driving unit was designed to travel at the speed ranges of 0.3∼0.8 m/sec depending on the operating modes with a maximum payload of 100 kg. 2. The console unit consisted of a main-board including a 80C196KC microprocessor and peripheral devices, a power-board and safety interlock. Worker-leading, and following modes were available in automatic and manual modes. 3. Steering was achieved by turning the steering motor against the sensed direction. Proper steering angles for correcting travel direction were determined as 5 and 9 degrees when sensing cultivation beds and plants, respectively.

A Study on AGV Steering Control using TDOF PID Controller (2자유도 PID 제어기를 이용한 AGV의 조향 제어에 관한 연구)

  • Lee, Gwon-Sun;Lee, Yeong-Jin;Son, Ju-Han;Lee, Man-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.241-248
    • /
    • 2000
  • Until now, all of the port goods are transported manually by container transporter in the port. Recently there are a lot of studies about unmanned vehicle driven automatically. In terms of the vehicle automation, the control of steering and velocity on vehicle systems is very important part in container transporter. In common sense, vehicle systems have lots of nonlinear parameters so we have many difficulties in designing the optimal controller of them. In this paper, we present a design of the TDOF PID controller using a hybrid schematic algorithm to control the steering system optimally. We used the single-track model to pre-test the designed controller before appling to AGV. We also used the ES(evolutionary strategy) and SA(simulated annealing) algorithms to construct the hybrid tuning algorithm for parameters of controller. Finally, we had the computer simulation to verify that our designed controller has better performance than the other one.

  • PDF

A Study on the 4WS Control Method with the Effect of Steering Wheel Angular Velocity (핸들조향속도를 고려한 4WS 제어방법에 관한 연구)

  • 이영화;김석일;김대영;김동룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.168-175
    • /
    • 1996
  • Except the collision avoidance performance related to the rapid lane change, the 4WS vehicle has better dynamic stability and handling performance than the conventional 2WS vehicle which has close relation with the driver's safety, a 4WS conrol method with the effect of steering wheel angular velocity is proposed based on the fact that the driver steers abruptly the steering wheel to avoid the collision. And the effects of the proposed 4WS control method are investigated on the dynamic stability and handling performance by using the ISO lane change test code.

  • PDF

Development of an electronically-controlled power steering for passenger cars (승용차용 전자제어식 조향장치의 개발)

  • 홍예선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.698-703
    • /
    • 1990
  • This paper describes an Electronically-controlled Power Steering system which is developed by the modification of a conventional power steering based on so called rotary valve technology. The steering effort is influenced by the electrohydraulic flow rate control of the pressurized oil to rotary valve. The vehicle speed and the steering angular velocity are used to calculate and output a signal to proportional flow rate control valve by the Electronic Control Unit. The improvement of the steering feel was satisfactory compared with that of the original conventional power steering.

  • PDF