• Title/Summary/Keyword: Vehicle Speed and Distance

Search Result 310, Processing Time 0.03 seconds

Optimized Handoff Scheme with Fuzzy logic in Heterogeneous Vehicular Mobile Networks (이종의 차량 모바일 네트워크에서 퍼지 로직을 이용한 최적의 핸드오프 기법)

  • Roh, Youngsam;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • The development of wireless communication systems has resulted in the availability of several access technologies at any geographic area, such as 3G networks, wireless local area networks (WLANs) and wireless broadband networks. The development of these technologies is provided for users who have experienced mobile network environments which are slow or fast-movement environment and change distance between the AP(Access Point). This paper describes network performance issues in various environmental changes. Also, Fuzzy logic is applied to evaluate the performance in vehicle networks around users' environmental factors to focusing on the minimizing of transfer time and costs. First, WLAN and 3G networks fixed distance between AP, Second, WLAN and 3G networks random distance between APs, finally above two environmental with vehicle Ad hoc networks is analyzed. These V2I and V2V environmental condition are assumed. Results which based on Fuzzy logic suggest an optimal performance in vehicle network environments according to vehicle speed and distance between APs. Proposed algorithm shows 21% and 13% improvement of networks performance in V2I and V2V environment.

An Recognition and Acquisition method of Distance Information in Direction Signs for Vehicle Location (차량의 위치 파악을 위한 도로안내표지판 인식과 거리정보 습득 방법)

  • Kim, Hyun-Tae;Jeong, Jin-Seong;Jang, Young-Min;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.70-79
    • /
    • 2017
  • This study proposes a method to quickly and accurately acquire distance information on direction signs. The proposed method is composed of the recognition of the sign, pre-processing to facilitate the acquisition of the road sign distance, and the acquisition of the distance data. The road sign recognition uses color detection including gamma correction in order to mitigate various noise issues. In order to facilitate the acquisition of distance data, this study applied tilt correction using linear factors, and resolution correction using Fourier transform. To acquire the distance data, morphological operation was used to highlight the area, along with labeling and template matching. By acquiring the distance information on the direction sign through such a processes, the proposed system can be output the distance remaining to the next junction. As a result, when the proposed method is applied to system it can process the data in real-time using the fast calculation speed, average speed was shown to be 0.46 second per frame, with accuracy of 0.65 in similarity value.

Autonomous Vehicle Tracking Using Two TDNN Neural Networks (뉴럴네트워크를 이용한 무인 전방차량 추적방법)

  • Lee, Hee-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1037-1045
    • /
    • 1996
  • In this paper, the parallel model for stereo camera is employed to find the heralding angle and the distance between a leading vehicle and the following vehicle, BART(Binocular Autonomous Research Team vehicle). Two TDNNs (Time Delay Neural Network) such as S-TDNN and A-TDNN are introduced to control BART. S-TDNN controls the speed of the following vehicle while A-TDNN controls the steering angle of BATR. A human drives BART to collect data which are used for training the said neural networks. The trained networks performed the vehicle tracking function satisfactorily under the same driving conditions performed by the human driver. The neural network approach has good portability which decreases costs and saves development time for the different types of vehicles.

  • PDF

A Study on the Running Stability of the High-speed Train by Wind Pressure and Crossing (고속열차의 풍압 및 교행에 의한 주행안정성 연구)

  • Jeon, Chang-Sung;Yun, Su-Hwan;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.880-887
    • /
    • 2020
  • This study was conducted to investigate the running stability of a high-speed train operated in a tunnel and an open field when external forces such as wind pressure and train crossings were applied to the vehicle. With no external force, the running stability at 400 km/h was examined, and the wheel weight reduction ratio, lateral pressure of the axles, and derailment coefficient satisfied the criteria of the technical standards for a high-speed train. When the distance between the centers of the tracks is 4.6 m, the external force caused by train crossing slightly affects the lateral acceleration of the vehicle but does not significantly affect the wheel weight reduction rate, lateral pressure, and derailment coefficient in a tunnel and open filed. When the distance is 4.6~5.0 m, the wheel weight reduction ratio, lateral pressure, and derailment coefficient satisfy the criteria with 20 m/s wind. When the wind speed was 30 m/s, the derailment coefficient satisfied the criteria, and the other variables exceeded them. It is predicted that a high-speed train can be operated safely at 400 km/h with wind speed of up to 20 m/s, and it should be slowed down at a wind speed of 30 m/s.

Real-time Localization of An UGV based on Uniform Arc Length Sampling of A 360 Degree Range Sensor (전방향 거리 센서의 균일 원호길이 샘플링을 이용한 무인 이동차량의 실시간 위치 추정)

  • Park, Soon-Yong;Choi, Sung-In
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.114-122
    • /
    • 2011
  • We propose an automatic localization technique based on Uniform Arc Length Sampling (UALS) of 360 degree range sensor data. The proposed method samples 3D points from dense a point-cloud which is acquired by the sensor, registers the sampled points to a digital surface model(DSM) in real-time, and determines the location of an Unmanned Ground Vehicle(UGV). To reduce the sampling and registration time of a sequence of dense range data, 3D range points are sampled uniformly in terms of ground sample distance. Using the proposed method, we can reduce the number of 3D points while maintaining their uniformity over range data. We compare the registration speed and accuracy of the proposed method with a conventional sample method. Through several experiments by changing the number of sampling points, we analyze the speed and accuracy of the proposed method.

Study of Factors Related to Speed Perception in a Graphic Simulator (시뮬레이터의 속도감에 대한 감성인자 분석)

  • Jeong, Young-Hun;Eom, Sung-Suk;Son, Kwon;Choi, Koung-Hyun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.105-110
    • /
    • 1999
  • This research has been focussed on the evaluation of the driving speed in a graphic environment. Through the investigation of some electronic driving games, two factors related to perceived speed have been extracted. The two factors are distance and density of objects. Experiments have been executed for the two factors. The experiment is needed to acquire a relationship between speed perception and each factor. For experiments involving more than ten subjects, graphical representation of a vehicle and its surrounding environment has been obtained using three-dimensional tools, Pro/ENGINEER and dVISE. Based on the experimental results, relationships are formulated and plotted.

  • PDF

Analysis of Elderly Driving Performance at Urban Skewed Intersection using Driving Simulator (고령 운전자 도심부 비 직각 교차로 운전행태 분석)

  • Ha, Tae-Woong;Hong, Seung-Jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the driving performances of elderly who's age is over 65 were evaluated. The driving simulation was conducted using a compact driving simulation (CDS) and the simulation scenarios were developed from actual roads by replicating geometry of skewed intersection and traffic control devices located in Jungnang-gu, Seoul, Korea. 27 elderly drivers and 10 non-elderly drivers were recruited and participated on the virtual turning right and going straight driving experiment of CDS. Virtual driving data of driving time, speed, distance, acceleration and deceleration speeds, brake power, and steering wheel rotation angle were recorded and analyzed. Generally, elderly driver took more times to pass through the skewed intersection road and showed lower approaching speed as much as 40% and 25% in case of turning right and going straight scenarios respectively. The speed deviation at skewed intersection road between elderly and non-elderly driver is expected to cause frequent lane changes and overtaking.

Steering Control of the Autonomous Guided Vehicle Driving System for Durability Test

  • Jeong, Jong-Won;Lee, Young-Jin;Yoon, Kang-Sup;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.104-104
    • /
    • 2000
  • Among durability tests, the accelerated durability test has been widely used to evaluate the durability of vehicle structure and chassis pans in a shon period of time on the designed road which has severe surface conditions. However it increases the drivers fatigue mainly caused by the severe driving conditions. The drivers difficulty of maintaining constant speed and controlling the steering wheel reduces the reliability of test results. The durability test includes the position and distance sensing system for the recognition of the absolute and relative driving position, the driving control system for the control of whole driving circumstance, the emergency system for responding to system errors. AGVDS (Autonomous Guided Vehicle Driving System) was Proved to facilitate the development of now car projects. Therefore the AGVDS we propose will help make the fundamentals for all future traffic systems.

  • PDF

Design of Linear Induction Motor Considering Accelerating Performance for Light Rail Transit (가속 성능을 고려한 경전철용 선형 유도전동기 설계)

  • Cho, Su-Yeon;Kim, Kwang-Soo;Ham, Sang-Hwan;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1409-1415
    • /
    • 2010
  • A linear induction motor have advantages for reducing mechanical frictions and noises because it has thrust force by induced torque instead of friction force between rail and wheels. An it has additional advantage for reducing volume of bogie frame for light rail transit. The small volume causes the cost of construction down. Recently, researches of linear induction motor for thrust force of the light rail transit have been actively studied. For the rail transit, vehicle is running as follow accelerating and constant speed, finally decelerating speed passing local stops between stations. The light rail transit have only these three patterns of operating. Thus, design of that has different design specifications from others. In this paper, the linear induction motor for the light rail transit was designed considering the goal speed, accelerating time, and accelerating distance for approaching the goal speed. The designed motor was proved that it could meet the requirement of accelerating performance by2-dimensional finite element method and mechanical dynamics equation.

  • PDF

A Study on the Performances of Hybrid type Electric Brake System (하이브리드형 전기식 제동장치의 성능에 대한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lim, Chul-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1492-1498
    • /
    • 2003
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes problems of a conventional hydraulic brake system. HEBS adopt a contactless type bake system when a vehicle speed is high, to obtain superior braking performances by eddy current. On the contrary, when a vehicle speed is low, HEBS employs a contact type brake system such as conventional hydraulic brake system to generate higher brake force. Therefore, HEBS transfers faster the braking intention of drivers and guarantees the safety of drivers. Braking torque analysis is performed by using a mathematical model which is proposed to investigate the characteristic of a vehicle dynamics when the brake torque is applied. Optimal torque control is achieved by maintaining a desired slip corresponding to the road condition. The results show that HEBS reduces the stopping distance, saves the electric energy, and increases the stability.