• Title/Summary/Keyword: Vehicle Security

Search Result 411, Processing Time 0.024 seconds

Design and Implementation of Certificate Revocation List Acquisition Method for Security of Vehicular Communications

  • Kim, Hyun-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.584-591
    • /
    • 2012
  • Distributing a Certificate Revocation List (CRL) quickly to all vehicles in the system requires a very large number of road side units (RSUs) to be deployed. In reality, initial deployment stage of vehicle networks would be characterized by limited infrastructure as a result in very limited vehicle to infrastructure communication. However, every vehicle wants the most recent CRLs to protect itself from malicious users and malfunctioning equipments, as well as to increase the overall security of the vehicle networks. To address this challenge, we design and implement a nomadic device based CRL acquisition method using nomadic device's communication capability with cellular networks. When a vehicle could not directly communicate with nearby RSUs, the nomadic device acts as a security mediator to perform vehicle's security functions continuously through cellular networks. Therefore, even if RSUs are not deployed or sparsely deployed, vehicle's security threats could be minimized by receiving the most recent CRLs in a reasonable time.

Measures for Automaker's Legal Risks from Security Threats in Connected Car Development Lifecycle

  • Kim, Dong Hee;Baek, Seung Jo;Lim, Jongin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.865-882
    • /
    • 2017
  • To improve passenger convenience and safety, today's vehicle is evolving into a "connected vehicle," which mounts various sensors, electronic control devices, and wired/wireless communication devices. However, as the number of connections to external networks via the various electronic devices of connected vehicles increases and the internal structures of vehicles become more complex, there is an increasing chance of encountering issues such as malfunctions due to various functional defects and hacking. Recalls and indemnifications due to such hacking or defects, which may occur as vehicles evolve into connected vehicles, are becoming a new risk for automakers, causing devastating financial losses. Therefore, automakers need to make voluntary efforts to comply with security ethics and strengthen their responsibilities. In this study, we investigated potential security issues that may occur under a connected vehicle environment (vehicle-to-vehicle, vehicle-to-infrastructure, and internal communication). Furthermore, we analyzed several case studies related to automaker's legal risks and responsibilities and identified the security requirements and necessary roles to be played by each player in the automobile development process (design, manufacturing, sales, and post-sales management) to enhance their responsibility, along with measures to manage their legal risks.

An optimal security management framework for backhaul-aware 5G- Vehicle to Everything (V2X)

  • Vishal Sharma;Jiyoon Kim;Yongho Ko;Ilsun You;Jung Taek Seo
    • Journal of Internet Technology
    • /
    • v.21 no.1
    • /
    • pp.249-264
    • /
    • 2020
  • Cellular (C) setups facilitate the connectivity amongst the devices with better provisioning of services to its users. Vehicular networks are one of the representative setups that aim at expanding their functionalities by using the available cellular systems like Long Term Evolution (LTE)-based Evolved Universal Terrestrial Radio Access Network (E-UTRAN) as well as the upcoming Fifth Generation (5G)-based functional architecture. The vehicular networks include Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle to Pedestrian (V2P) and Vehicle to Network (V2N), all of which are referred to as Vehicle to Everything (V2X). 5G has dominated the vehicular network and most of the upcoming research is motivated towards the fully functional utilization of 5G-V2X. Despite that, credential management and edge-initiated security are yet to be resolved under 5G-V2X. To further understand the issue, this paper presents security management as a principle of sustainability and key-management. The performance tradeoff is evaluated with the key-updates required to maintain a secure connection between the vehicles and the 5G-terminals. The proposed approach aims at the utilization of high-speed mmWave-based backhaul for enhancing the security operations between the core and the sub-divided functions at the edge of the network through a dual security management framework. The evaluations are conducted using numerical simulations, which help to understand the impact on the sustainability of connections as well as identification of the fail-safe points for secure and fast operations. Furthermore, the evaluations help to follow the multiple tradeoffs of security and performance based on the metrics like mandatory key updates, the range of operations and the probability of connectivity.

Development of Security Functional Requirements for Secure-Introduction of Unmanned Aerial Vehicle (무인항공기의 안전한 도입을 위한 보안기능요구사항 개발)

  • Kang, Dongwoo;Won, Dongho;Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.19 no.4
    • /
    • pp.97-105
    • /
    • 2019
  • With the possibility of wireless control of the aircraft by Nicola Tesla, Unmanned Aerial Vehicle(UAV) was mainly used for military and defense purposes with the rapid development through World War I and II. As civilian applications of unmanned aerial vehicles have expanded, they have been used with various services, and attempts have been made to control various environmental changes and risk factors of unmanned aerial vehicles. However, GPS spoofing, Jamming attack and security accidents are occurring due to the communication in the unmaned aerial vehicle system or the security vulnerability of the unmanned aerial vehicle itself. In order to secure introduction of Unmanned aerial vehicle, South Korea has established Unmanned Aerial Vehicle verification system called Airworthiness Certification. However, the existing cerfication system is more focused on test flight, design and structure's safety and reliability. In this paper, we propose a unmanned aerial vehicle system model and propose security functional requirements on unmanned aerial vehicle system in the corresponding system model for secure-introduction of Unmanned Aerial Vehicle. We suggest the development direction of verification technology. From this proposal, future development directions of evaluation and verification technology of Unmanned Aerial Vehicle will be presented.

A Study on Security Requirements of Electric Vehicle Charging Infrastructure Using Threat Modeling (위협모델링을 이용한 전기차 충전 인프라의 보안요구사항에 대한 연구)

  • Cha, Ye-Seul;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1441-1455
    • /
    • 2017
  • In order to build a secure electric vehicle charging infrastructure, security research is required because various data including charging and payment data are transmitted in the electric vehicle charging infrastructure. However, previous researches have focused on smart grid related security research such as power system infrastructure rather than charging infrastructure for electric vehicle charging. In addition, research on charging infrastructure is still lacking, and research using a systematic methodology such as threat modeling is not yet under way. Therefore, it is necessary to apply threat modeling to identify security threats and systematically analyze security requirements to build a secure electric vehicle charging infrastructure. In this paper, we analyze the electric vehicle charging infrastructure by accurately identifying possible threats and deriving objective security requirements using threat modeling including Data Flow Diagram, STRIDE, and Attack Tree.

A Message Authentication and Key Distribution Mechanism Secure Against CAN bus Attack (CAN 버스 공격에 안전한 메시지 인증 및 키 분배 메커니즘)

  • Cho, A-Ram;Jo, Hyo Jin;Woo, Samuel;Son, Young Dong;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.1057-1068
    • /
    • 2012
  • According to advance on vehicle technology, many kinds of ECU(Electronic Control Unit) are equipped inside the vehicle. In-vehicle communication among ECUs is performed through CAN(Controller Area Networks). CAN have high reliability. However, it has many vulnerabilities because there is not any security mechanism for CAN. Recently, many papers proposed attacks of in-vehicle communication by using these vulnerabilities. In this paper, we propose an wireless attack model using a mobile radio communication network. We propose a secure authentication mechanism for in-vehicle network communication that assure confidentiality and integrity of data packets and also protect in-vehicle communication from the replay attack.

An Analysis of the Relative Importance of Security Level Check Items for Autonomous Vehicle Security Threat Response (자율주행차 보안 위협 대응을 위한 보안 수준 점검 항목의 상대적 중요도 분석)

  • Im, Dong Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.145-156
    • /
    • 2022
  • To strengthen the security of autonomous vehicles, this study derived checklists through the analysis of the status of autonomous vehicle security. The analyzed statuses include autonomous vehicle characteristics, security threats, and domestic and foreign security standards. The derived checklists are then applied to the AHP(Analytic Hierarchy Process) model to find their relative importance. Relative importance was ranked as one of cyber security management system establishment and implementation, encryption, risk assessment, etc. The significance of this study is to reduce cyber security incidents that cause human casualties as well improve the level of security management of autonomous vehicles in related companies by deriving the autonomous vehicle security level checklists and demonstrating the model. If the inspection is performed considering the relative importance of the checklists, the security level can be identified early.

A Design of Framework for Secure Communication in Vehicular Cloud Environment (차량 클라우드 환경에서 안전한 통신을 위한 프레임워크 설계)

  • Park, Jung-oh;Choi, Do-hyeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2114-2120
    • /
    • 2015
  • Vehicle cloud technology is a fusion technology of vehicle communication technology and cloud computing used in wired and wireless Internet, and has attracted attention as a new IT paradigm. It is expected that it would contribute to resolve the road traffic problem with effective communication by providing computer, sensor, communication, device, and resource. but security is necessary to apply vehicle cloud environment and it have to resolve security threats and various attacks occurred in wired and wireless vehicle environment. Therefore, in this paper, we designed security framework to provide secure communication between vehicle and vehicle, and vehicle and the Road side in the vehicle cloud environment. Safety and security of the vehicle environment was satisfied with the security requirements of the vehicle and cloud-based environment, and increased efficiency than the conventional vehicle network communication protocols.

Analysis of Security Requirements for Secure Update of IVI(In-Vehicle-Infotainment) Using Threat Modeling and Common Criteria (위협모델링과 공통평가기준을 활용한 인포테인먼트의 안전한 업데이트 보안요구사항 분석)

  • Kang, Soo-young;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.613-628
    • /
    • 2019
  • In-Vehicle Infotainment provides navigation and various functions through the installation of the application. And infotainment is very important to control the entire vehicle by sending commands to the ECU. Infotainment supports a variety of wireless communication protocols to install and update applications. So Infotainment is becoming an attack surface through wireless communcation protocol for hacker's access. If malicious software is installed in infotainment, it can gain control of the vehicle and send a malicious purpose command to the ECU, affecting the life of the driver. Therefore, measures are needed to verify the security and reliability of infotainment software updates, and security requirements must be derived and verified. It must be developed in accordance with SDL to provide security and reliability, and systematic security requirements must be derived by applying threat modeling. Therefore, this paper conducts threat modeling to derive infotainment update security requirements. Also, the security requirements are mapped to the Common Criteria to provide criteria for updating infotainment software.

A Design of Group Signature Based Vehicle Payment Protocol to Ensure Vehicle Anonymity (차량 익명성을 보장하는 그룹 서명기반 차량용 결제 프로토콜 설계)

  • Chung, Myung-woo;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.753-773
    • /
    • 2019
  • CV(Connected Vehicle) technology provides safety-related services and user convenience-related services to vehicle. Safety-related services can cause privacy problem by continuously transmitting vehicle information to nearby vehicles or base stations. Therefore, safety-related services should provide vehicle anonymity for privacy protection. However, if convenience-related services such as payment services fail to provide vehicle anonymity, driver information related to safety-related services may also be leaked. In this paper, we design a payment protocol based on ECQV(Elliptic Curve Qu-Vanstone) impicit certificate and group signature that provides BU-anonymity and traceability. The proposed payment protocol makes it impossible to track vehicles from payment transactions history by separating roles of payment system components. Moreover, we define the security requirements that the vehicle payment protocol must satisfy and show that the protocol satisfies the requirements.