• Title/Summary/Keyword: Vehicle Seat

Search Result 271, Processing Time 0.027 seconds

Study of Smart Vehicle Seat for Real-time Driver Posture Monitoring (운전자 자세 실시간 모니터링이 가능한 스마트 자동차 시트 연구)

  • Shim, Kwangmin;Seo, Jung Hwan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • In recent years, the increasing interest in health-care requires the industrial products to be well-designed ergonomically. In the commercial vehicle industry, several researchers have demonstrated the driver's posture has great effect on the orthopedic desease such as fatigue, back pain, scoliosis, and so on. However, the existing sensor systems developed for measuring the driver posture in real time have suffered from inaccuracy and low reliability issues. Here, we suggest our smart vehicle seat system capable of real-time driver posture monitoring by using the air bag sensor package with high sensitivity and reliability. The ergonomic numerical model which can evaluate a driver's posture has been developed on the basis of the human body segmentation method followed by simulation-based validation. Our experimental analysis of obtained pressure distribution of a vehicle seat under the different driver's postures revealed our smart vehicle system successfully achieved the driver's real-time posture data in great agreement with our numerical model.

OPTIMUM AIR PRESSURE FOR AN AIR-CELL SEAT TO ENHANCE RIDE COMFORT

  • YOO W. S.;PARK D. W.;KIM M. S.;HONG K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.251-257
    • /
    • 2005
  • Several air cells are installed in the seat cushion to adjust the stiffness of seat by changing the air pressure. To select proper air pressure in the air cells, two kinds of tests are performed. For the pressure distribution on the seat, the maximum pressure and mean pressure are compared. And for the dynamic ride values, SEAT (Seat Effective Amplitude Transmissibility) values are calculated and compared. These experiments are carried out with three different drivers, three different vehicle speeds on the highway and two different speed on the primary road, and three different air pressures. From the real car tests, optimum air cell pressure depending on the vehicle speed and driver's weight are recommended.

Performance Evaluation of Commercial Vehicle with MR Seat Damper (MR 시트댐퍼를 장착한 상용차의 제어성능 평가)

  • 성금길;이호근;남무호;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1048-1053
    • /
    • 2003
  • This paper proposed a MR(Magneto-rheological) seat damper for a commercial vehicle. After formulating the governing equation of motion, an appropriate size of damper is designed and manufactured. Following the equation of fie d-dependent damping force characteristics, a semi-active seat suspension installed with the proposed MR-damper is constructed and its dynamic model id established, Subsequently, vibration isolation performance of the semi-active suspension system is demonstrated by incorporating with a MRAC(Model referenced adaptive control) fer the MR Seat Damper

  • PDF

Optimal Design of Automotive Seat Back Frame Using Finite Element Analysis (유한요소해석을 이용한 차량용 시트 백 프레임의 최적설계)

  • Shin, Hyeonho;Kang, Hee Yong;Yang, Sung Mo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.57-62
    • /
    • 2019
  • The seat back frame of the vehicle is subjected to load on the passenger behavior. Because of steel material, it is necessary to optimize the frame considering lightweight and safety. In this paper, finite element analysis is used for the optimal design of the seat back frame. First, a lightweight material is applied to reduce the weight of the seat back frame. Secondly, the design position of the pipe part fastened in the seat back frame was selected by considering the strength against the load generated by the occupant. Third, the shape of the side frame was derived by performing the phase optimization analysis for the AFT load condition. And we have compared the initial model with the optimal model to verify the light weighting and safety. As a result, the optimal design model of the seat back frame satisfying the weight reduction and safety has been proposed.

Ride Quality Investigation of Passenger Cars on Different Road Conditions

  • Park, Se Jin;Subramaniyam, Murali
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.389-396
    • /
    • 2013
  • Objective: The ride qualities of the six passenger cars were evaluated in 4 subjects on the highway and uneven road. The relation between vibration with driving velocity and driving posture were also investigated separately. Background: Ride comfort plays an important role in the vehicle design. Vibration is the one of the principal components associated with ride comfort. Method: The acceleration of the foot, hip and back were measured using B&K accelerometers in this study. The velocity of the passenger cars was maintained at a constant speed of 80km/h on the highway and 40km/h on the uneven road. For evaluating the effects of driving velocity and driving posture on vehicle's vibration level, separate experiments were performed on the highway with 5 different vehicle speeds and 5 different backrest angles, respectively. Results: The overall ride value of the luxury car showed the best result while the smaller car showed the worst value on the highway. On the uneven road the overall ride value level was increased 75~98%. All the vehicles had the SEAT value less than 1. Faster the velocity lowers the SEAT value. The ride quality in terms of vibration gets worst when the backrest angle increased. Conclusion: The smaller car had a first mode at the higher frequency and showed higher vibration level. SEAT value was mostly affected by the seat property not by vehicle. We ranked the luxury car seat had a best vibration reduction quality than others based on SEAT values. When the driving velocity increased, the overall ride values were increased proportionally and the SEAT values were somewhat decreased. Application: Evaluation of whole-body vibration in the passenger car.

A study of rear seat belts geometric characteristics for rear seated occupants protections (뒷좌석 승객 보호를 위한 안전띠의 기하학적 특성에 대한 연구)

  • Youn, Younghan;Park, Jiyang;Lee, Seungsang;Kim, Minyoung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • The protection of frontal seat passengers in both driver and front seated occupant has been more focused from the auto industries as well as regulatory bodies more than 40 years. Recently, their interests have been extended to rear seat occupants especially children and female occupants. However, the current available safety devices for the rear seat occupants are seat belt only. According to the previous researchers, the injury level of the rear seat passengers tend to be higher than the injury level of the frontal seat passengers. In this study, the optimal location of seat belts anchorages to enhance rear passengers crashworthiness are studied. FEM models are designed in accordance with regulation of KMVSS102, UN R44, UN R16, and UN R14. and three point belts are fitted on the HybridIII 5th percentile dummy and HybridIII 50th percentile dummy. The combined injury value used HIC15, Nij, Chest deflection, Femur force are used to evaluate rear seat belt anchorage optimal locations.

Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat (RV 차량 시트의 적재물 침입 강도해석)

  • Bae Jinwoo;Kang Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

A study on the magnetic suspension system for commercial vehicle (상용차용 마그네틱 현가기구 개발에 대한 연구)

  • Ju, Hyung-Jun;Kim, Dae-Sung;Lee, Bong-Hyun;Kim, Jung-In;Kim, Chan-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.409-414
    • /
    • 2011
  • The drivers of commercial vehicle easily feel tired because of a long time driving and bad road condition. Therefore it is very important to make the driver seat comfortable. This paper introduces the suspension system of driver's seat using magnetic force. The combination of linear spring and magnetic force can make nonlinear spring which has optimal stiffness for minimal vibration transmissibility. The vibrations of driver's seat floor are measured in various road condition. And the numerical simulations and experiments are performed to define the optimal parameter of magnetic suspension system.

  • PDF

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.