• Title/Summary/Keyword: Vehicle Safety Communications

Search Result 69, Processing Time 0.023 seconds

Hardware Design for Timing Synchronization of OFDM-Based WAVE Systems (OFDM 기반 WAVE 시스템의 시간동기 하드웨어 설계)

  • Huynh, Tronganh;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.473-478
    • /
    • 2008
  • WAVE is a short-to-medium range communication standard that supports both public safety and private operations in roadside-to-vehicle and vehicle-to-vehicle communication environments. The core technology of physical layer in WAVE is orthogonal frequency division multiplexing (OFDM), which is sensitive to timing synchronization error. Besides, minimizing the latency in communication link is an essential characteristic of WAVE system. In this paper, a robust, low-complexity and small-latency timing synchronization algorithm suitable for WAVE system and its efficient hardware architecture are proposed. The comparison between proposed algorithm and other algorithms in terms of computational complexity and latency has shown the advantage of the proposed algorithm. The proposed architecture does not require RAM (Random Access Memory) which can affect the pipe lining ability and high speed operation of the hardware implementation. Synchronization error rate (SER) evaluation using both Matlab and FPGA implementation shows that the proposed algorithm exhibits a good performance over the existing algorithms.

Research on Relay Selection Technology Based on Regular Hexagon Region Segmentation in C-V2X

  • Li, Zhigang;Yue, Xinan;Wang, Xin;Li, Baozhu;Huang, Daoying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.3138-3151
    • /
    • 2022
  • Traffic safety and congestion are becoming more and more serious, especially the frequent occurrence of traffic accidents, which have caused great casualties and economic losses. Cellular Vehicle to Everything (C-V2X) can assist in safe driving and improve traffic efficiency through real-time information sharing and communication between vehicles. All vehicles communicate directly with Base Stations (BS), which will increase the base station load. And when the communicating vehicles are too far apart, too fast or there are obstacles in the communication path, the communication link can be unstable or even interrupted. Therefore, choosing an effective and reliable multi-hop relay-assisted Vehicle to Vehicle (V2V) communication can not only reduce the base station load and improve the system throughput but also expand the base station coverage and improve the communication quality of edge vehicles. Therefore, a communication area division scheme based on regular hexagon segmentation technology is proposed, a relay-assisted V2V communication mechanism is designed for the divided communication areas, and an efficient communication link is constructed by selecting the best relay node. Simulation results show that the scheme can improve the throughput of the system by nearly 55% and enhance the robustness of the V2V communication link.

Secure and Efficient Protocol for Vehicular Communication with Privacy Preservation (프라이버시를 보호하며 안전하고 효율적인 차량간 통신 프로토콜)

  • Kim, In-Hwan;Choi, Hyoung-Kee;Kim, Jung-Yoon
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.6
    • /
    • pp.420-430
    • /
    • 2010
  • Due to increasing demand for improving road safety and optimizing road traffic, Vehicular Ad-Hoc Networks (VANET) have been subject to extensive attentions from all aspects of commercial industry and academic community. Security and user privacy are fundamental issues for all possible promising applications in VANET. Most of the existing security proposals for secure VANET concentrate authentication with privacy preservation in vehicle-to-vehicle (V2V) and vehicle-to-roadside infrastructure (V2I) communications and require huge storage and network capacity for management of revocation list. Motivated by the fact, we propose a new scheme with security and privacy preservation which combines V2V and V2I communication. With our proposed scheme, the communication and computational delay for authentication and overhead for management of revocation list can be significantly reduced due to mutual authentication between a vehicle and a Roadside Unit (RSU) requires only two messages, and the RSU issues the anonymous certificate for the vehicle on behalf of the Trust Authority (TA). We demonstrate that the proposed protocol cannot only guarantee the requirements of security and privacy but can also provide efficiency of authentication and management of revocation list.

Design of a Real-time Algorithm Using Block-DCT for the Recognition of Speed Limit Signs (Block-DCT를 이용한 속도 제한 표지판 실시간 인식 알고리듬의 설계)

  • Han, Seung-Wha;Cho, Han-Min;Kim, Kwang-Soo;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1574-1585
    • /
    • 2011
  • This paper proposes a real-time algorithm for speed limit sign recognition for advanced safety vehicle system. The proposed algorithm uses Block-DCT in extracting features from a given ROI(Region Of Interest) instead of using entire pixel values as in previous works. The proposed algorithm chooses parts of the DCT coefficients according to the proposed discriminant factor, uses correlation coefficients and variances among ROIs from training samples to reduce amount of arithmetic operations without performance degradation in classification process. The algorithm recognizes the speed limit signs using the information obtained during training process by calculating LDA and Mahalanobis Distance. To increase the hit rate of recognition, it uses accumulated classification results computed for a sequence of frames. Experimental results show that the hit rate of recognition for sequential frames reaches up to 100 %. When compared with previous works, numbers of multiply and add operations are reduced by 69.3 % and 67.9 %, respectively. Start after striking space key 2 times.

An Efficient Association Control Method for Vehicular Networks with Mobile Hotspots

  • Hwang, Jae-Ryong;Choi, Jae-Hyuk;Yoo, Joon;Lee, Hwa-Ryong;Kim, Chong-Kwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.888-908
    • /
    • 2011
  • The increasing demand from passengers in vehicles to improve safety, traffic efficiency, and comfort has lead to the growing interest of Wi-Fi based vehicle-to-infrastructure (V2I) communications. Although the V2I system provides fast and cost-effective Internet connectivity to vehicles via roadside Wi-Fi access points (APs), it suffers from frequent handoffs due to the high mobility of vehicles and the limited coverage of Wi-Fi APs. Recently, the Mobile AP (MAP) platform has emerged as a promising solution that overcomes the problem in the V2I systems. The main advantage is that MAPs may yield longer service duration to the nearby vehicles that have similar mobility patterns, yet they provide smaller link capacities than the roadside APs. In this paper, we present a new association control technique that harnesses available connection duration as well as achievable link bandwidth in high-speed vehicular network environments. We also analyze the tradeoff between two association metrics, namely, available connection duration and achievable link bandwidth. Extensive simulation studies based on real traces demonstrate that our scheme significantly outperforms the previous methods.

User Authentication Method on VANET Environment (VANET 환경에서의 사용자 인증 기법)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.576-583
    • /
    • 2012
  • Security over VANET among vehicles and between vehicles and infrastructures has been studied. Through the research, ensuring the message authentication and confidentiality was possible. However, authentication on drivers and vehicles were not actively covered. Once, malicious user using illegal vehicle joins VANET and then generates mistaken information, other drivers' safety will be driven to crisis. For this reason, in the paper, we present a novel authentication method between drivers and vehicles and then only right vehicles and users can participate in VANET. As a result of this, drivers can enjoy their safe and comfortable trip.

Reliable Multicast MAC Protocol for Cooperative Autonomous Vehicles (협력적 자율 차량을 위한 신뢰성있는 멀티케스트 MAC 프로토콜)

  • Kim, Jungsook;Kim, Juwan;Choi, Jeongdan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.180-187
    • /
    • 2014
  • This paper introduces reliable multicast MAC protocol for cooperative unmanned vehicles. cooperative unmanned vehicles communicate with infrastructure and other unmanned vehicles in order to increase driving safety. They exchange information related to driving and thus it requires real-time and reliable multicast. However, the international vehicular communication standard, IEEE 802.11p WAVE, does not provide a reliable multicast scheme on the MAC layer. To address the problems of reliability, we propose a reliable multicast protocol called WiVCL, which avoids contention and collision. Our evaluation shows that the WiVCL achieves a high degree of reliability and real-time features.

Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle

  • Corpino, Sabrina;Stesina, Fabrizio;Calvi, Daniele;Guerra, Luca
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.271-290
    • /
    • 2020
  • The paper describes the analysis of deployment strategies and trajectories design suitable for executing the inspection of an operative spacecraft in orbit through re-usable CubeSats. Similar missions have been though indeed, and one mission recently flew from the International Space Station. However, it is important to underline that the inspection of an operative spacecraft in orbit features some peculiar characteristics which have not been demonstrated by any mission flown to date. The most critical aspects of the CubeSat inspection mission stem from safety issues and technology availability in the following areas: trajectory design and motion control of the inspector relative to the target, communications architecture, deployment and retrieval of the inspector, and observation needs. The objectives of the present study are 1) the identification of requirements applicable to the deployment of a nanosatellite from the mother-craft, which is also the subject of the inspection, and 2) the identification of solutions for the trajectories to be flown along the mission phases. The mission for the in-situ observation of Space Rider is proposed as reference case, but the conclusions are applicable to other targets such as the ISS, and they might also be useful for missions targeted at debris inspection.

A Survey on UAV Network for Secure Communication and Attack Detection: A focus on Q-learning, Blockchain, IRS and mmWave Technologies

  • Madhuvanthi T;Revathi A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.779-800
    • /
    • 2024
  • Unmanned Aerial Vehicle (UAV) networks, also known as drone networks, have gained significant attention for their potential in various applications, including communication. UAV networks for communication involve using a fleet of drones to establish wireless connectivity and provide communication services in areas where traditional infrastructure is lacking or disrupted. UAV communication networks need to be highly secured to ensure the technology's security and the users' safety. The proposed survey provides a comprehensive overview of the current state-of-the-art UAV network security solutions. In this paper, we analyze the existing literature on UAV security and identify the various types of attacks and the underlying vulnerabilities they exploit. Detailed mitigation techniques and countermeasures for the protection of UAVs are described in this paper. The survey focuses on the implementation of novel technologies like Q-learning, blockchain, IRS, and mmWave. This paper discusses network simulation tools that range in complexity, features, and programming capabilities. Finally, future research directions and challenges are highlighted.

Analysis of Urban Traffic Network Structure based on ITS Big Data (ITS 빅데이터를 활용한 도시 교통네트워크 구조분석)

  • Kim, Yong Yeon;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2017
  • Intelligent transportation system (ITS) has been introduced to maximize the efficiency of operation and utilization of the urban traffic facilities and promote the safety and convenience of the users. With the expansion of ITS, various traffic big data such as road traffic situation, traffic volume, public transportation operation status, management situation, and public traffic use status have been increased exponentially. In this paper, we derive structural characteristics of urban traffic according to the vehicle flow by using big data network analysis. DSRC (Dedicated Short Range Communications) data is used to construct the traffic network. The results can help to understand the complex urban traffic characteristics more easily and provide basic research data for urban transportation plan such as road congestion resolution plan, road expansion plan, and bus line/interval plan in a city.

  • PDF