• Title/Summary/Keyword: Vehicle Recognition

Search Result 623, Processing Time 0.032 seconds

Malaysian Vehicle License Plate Recognition in Low Illumination Images (저 조도 영상에서의 말레이시아 차량 번호판 인식)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.19-26
    • /
    • 2013
  • In the Malaysian license plates, alphabets and numerals which are made by plastic, are adhered to a frame as embossing style and occasionally characters in horizontal, vertical directions are aligned with narrow space. So the extraction of character stroke information can be hard in the vehicle images of low illumination intensity. In this paper, Malaysian license plate recognition algorithm for low illumination intensity image is proposed. DoG filtering based character stroke generation method is introduced to derive exact connected components of strokes in the vehicle image of low illumination intensity. After localization of plate by connected component analysis, characters are segmented and recognized. Algorithm is experimented for the 6,046 vehicle images captured in Kuala Lumpur by IR camera without using any special light during day and night. The experimental results show that recognition accuracy of plates is 96.1%.

Development of Real-Time Under Vehicle Inspection System Engine by Image Identification Event (영상 판독 이벤트 신호로 제어되는 실시간 차량하부 검사 시스템 엔진 개발)

  • Jeon, Ji-Hye;Yang, Ji-Hee;Jang, Ji-Woong;Park, Goo-Man
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.16-21
    • /
    • 2015
  • In this paper, we presented Under Vehicle Inspection System by comparing two image signals. Two signals are generated by license plate number and under-vehicle pattern recognition. The test shows reliable precision within real-time of 2.8sec, which can be applicable commercially. In the future, more research will be conducted to enhance the precision by automatic image balance in many challenging situations.

Detection and Recognition of Vehicle Brake Lights using an R-Filtering (R-필터링을 이용한 자동차 브레이크등 검출과 인식)

  • Jung, Min-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.95-100
    • /
    • 2011
  • This paper proposes a new method of vehicle brake lights detection and recognition using an R-filtering. Firstly, the proposed method processes the R-filtering with the first input image and then with the second one in order to detect brake lights. Secondly, the method counts the number of red pixels and computes the mean value in each R-filtered image. The difference rates between the numbers of the red pixels and between the mean values of two images are defined in this paper. Through the analysis of the difference rates, it can recognize whether brake lights are turned on or off, and whether the vehicle ahead is being approached or not. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithm is quite successful.

Underwater Robot Localization by Probability-based Object Recognition Framework Using Sonar Image (소나 영상을 이용한 확률적 물체 인식 구조 기반 수중로봇의 위치추정)

  • Lee, Yeongjun;Choi, Jinwoo;Choi, Hyun-Teak
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.232-241
    • /
    • 2014
  • This paper proposes an underwater localization algorithm using probabilistic object recognition. It is organized as follows; 1) recognizing artificial objects using imaging sonar, and 2) localizing the recognized objects and the vehicle using EKF(Extended Kalman Filter) based SLAM. For this purpose, we develop artificial landmarks to be recognized even under the unstable sonar images induced by noise. Moreover, a probabilistic recognition framework is proposed. In this way, the distance and bearing of the recognized artificial landmarks are acquired to perform the localization of the underwater vehicle. Using the recognized objects, EKF-based SLAM is carried out and results in a path of the underwater vehicle and the location of landmarks. The proposed localization algorithm is verified by experiments in a basin.

Recognition of vehicle number plate using multi backpropagation neural network (다중 역전파 신경망을 이용한 차량 번호판의 인식)

  • 최재호;조범준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2432-2438
    • /
    • 1997
  • This paper proposes recognition system using multi-backpropagation neural networks rather than single backpropagation neural network to enhance the rate of character recognition resultsing from extracting the region of velhicle number in that the image of vehicle number plate from CCD camera has a distinguish feature, that is, illumination of a pattern. The experiment in this paper shows an output that the method using multi-backpropagation neural networks rather than signal backpropagation neural network takes less training time for computation and also has higher recognition rage of vehicle number.

  • PDF

Utilizing LiDAR Data to Vehicle Recognition on the Road (도로의 차량 인식을 위한 LiDAR 자료 적용연구)

  • Choi, Yun-Woong;Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.179-188
    • /
    • 2007
  • Vehicle recognition is very important preprocess to get vehicle information for traffic management. This is a basic study to apply LiDAR data for extracting traffic information. Hence, this study presents two algorithms, one of them is for extracting road points from LiDAR data and then extracting vehicle points on the road, the other is for estimating the size of extracted vehicle. As a result, in the wide area, the number of vehicles on the road and the size of the vehicles were recognized from the LiDAR data.

  • PDF

Development of AVN Software Using Vehicle Information for Hand Gesture (차량정보 분석과 제스처 인식을 위한 AVN 소프트웨어 구현)

  • Oh, Gyu-tae;Park, Inhye;Lee, Sang-yub;Ko, Jae-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.892-898
    • /
    • 2017
  • This paper describes the development of AVN(Audio Video Navigation) software for vehicle information analysis and gesture recognition. The module that examine the CAN(Controller Area Network) data of vehicle in the designed software analyzes the driving state. Using classified information, the AVN software converge vehicle information and hand gesture information. As the result, the derived data is used to match the service step and to perform the service. The designed AVN software was implemented in HW platform that common used in vehicles. And we confirmed the operation of vehicle analysing module and gesture recognition in a simulated environment that is similar with real world.

Vehicle License Plate Recognition System using SSD-Mobilenet and ResNet for Mobile Device (SSD-Mobilenet과 ResNet을 이용한 모바일 기기용 자동차 번호판 인식시스템)

  • Kim, Woonki;Dehghan, Fatemeh;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.92-98
    • /
    • 2020
  • This paper proposes a vehicle license plate recognition system using light weight deep learning models without high-end server. The proposed license plate recognition system consists of 3 steps: [license plate detection]-[character area segmentation]-[character recognition]. SSD-Mobilenet was used for license plate detection, ResNet with localization was used for character area segmentation, ResNet was used for character recognition. Experiemnts using Samsung Galaxy S7 and LG Q9, accuracy showed 85.3% accuracy and around 1.1 second running time.

A Study on the Model Recognition of Moving Vehicles Using a Neural Network (신경망을 이용한 운행차량의 차종인식 연구)

  • Lee, Hyo-Jong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.69-78
    • /
    • 2005
  • The number of vehicles are rapidly increased as modern industrialization is developed worldwide. Vehicle recognition has been studied for a while because mmy People acknowledged it has critical functions to solve the problems of traffic control or vehicle-related crimes. In this paper a novel method is proposed to recognize vehicles' model corresponding makers in order to increase the efficiency of recognition. Texture features are computed from the frontal image of vehicles. A three-layer neural network was built and trained with the texture features for recognition. The proposed method shows 95$\%$ recognition rate for moving vehicles' models.

Vehicle License Plate Recognition System using DCT and LVQ (DCT와 LVQ를 이용한 차량번호판 인식 시스템)

  • 한수환
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 2002
  • This paper proposes a vehicle license plate recognition system, which has relatively a simple structure and is highly tolerant of noise, by using the DCT(Discrete Cosine Transform) coefficients extracted from the character region of a license plate and the LVQ(Learning Vector Quantization) neural network. The image of a license plate is taken from a captured vehicle image based on RGB color information, and the character region is derived by the histogram of the license plate and the relative position of individual characters in the plate. The feature vector obtained by the DCT of extracted character region is utilized as an input to the LVQ neural classifier fur the recognition process. In the experiment, 109 vehicle images captured under various types of circumstances were tested with the proposed method, and the relatively high extraction rate of license plates and recognition rate were achieved.

  • PDF