• Title/Summary/Keyword: Vehicle Recognition

Search Result 623, Processing Time 0.027 seconds

Implementation of Deep Learning-Based Vehicle Model and License Plate Recognition System (딥러닝 기반 자동차 모델 및 번호판 인식 시스템 구현)

  • Ham, Kyoung-Youn;Kang, Gil-Nam;Lee, Jang-Hyeon;Lee, Jung-Woo;Park, Dong-Hoon;Ryoo, Myung-Chun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.465-466
    • /
    • 2022
  • 본 논문에서는 딥러닝 영상인식 기술을 활용한 객체검출 모델인 YOLOv4를 활용하여 차량의 모델과 번호판인식 시스템을 제안한다. 본 논문에서 제안하는 시스템은 실시간 영상처리기술인 YOLOv4를 사용하여 차량모델 인식과 번호판 영역 검출을 하고, CNN(Convolutional Neural Network)알고리즘을 이용하여 번호판의 글자와 숫자를 인식한다. 이러한 방법을 이용한다면 카메라 1대로 차량의 모델 인식과 번호판 인식이 가능하다. 차량모델 인식과 번호판 영역 검출에는 실제 데이터를 사용하였으며, 차량 번호판 문자 인식의 경우 실제 데이터와 가상 데이터를 사용하였다. 차량 모델 인식 정확도는 92.3%, 번호판 검출 98.9%, 번호판 문자 인식 94.2%를 기록하였다.

  • PDF

Comparison of estimating vegetation index for outdoor free-range pig production using convolutional neural networks

  • Sang-Hyon OH;Hee-Mun Park;Jin-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1254-1269
    • /
    • 2023
  • This study aims to predict the change in corn share according to the grazing of 20 gestational sows in a mature corn field by taking images with a camera-equipped unmanned air vehicle (UAV). Deep learning based on convolutional neural networks (CNNs) has been verified for its performance in various areas. It has also demonstrated high recognition accuracy and detection time in agricultural applications such as pest and disease diagnosis and prediction. A large amount of data is required to train CNNs effectively. Still, since UAVs capture only a limited number of images, we propose a data augmentation method that can effectively increase data. And most occupancy prediction predicts occupancy by designing a CNN-based object detector for an image and counting the number of recognized objects or calculating the number of pixels occupied by an object. These methods require complex occupancy rate calculations; the accuracy depends on whether the object features of interest are visible in the image. However, in this study, CNN is not approached as a corn object detection and classification problem but as a function approximation and regression problem so that the occupancy rate of corn objects in an image can be represented as the CNN output. The proposed method effectively estimates occupancy for a limited number of cornfield photos, shows excellent prediction accuracy, and confirms the potential and scalability of deep learning.

Design of Vehicle-mounted Loading and Unloading Equipment and Autonomous Control Method using Deep Learning Object Detection (차량 탑재형 상·하역 장비의 설계와 딥러닝 객체 인식을 이용한 자동제어 방법)

  • Soon-Kyo Lee;Sunmok Kim;Hyowon Woo;Suk Lee;Ki-Baek Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • Large warehouses are building automation systems to increase efficiency. However, small warehouses, military bases, and local stores are unable to introduce automated logistics systems due to lack of space and budget, and are handling tasks manually, failing to improve efficiency. To solve this problem, this study designed small loading and unloading equipment that can be mounted on transportation vehicles. The equipment can be controlled remotely and is automatically controlled from the point where pallets loaded with cargo are visible using real-time video from an attached camera. Cargo recognition and control command generation for automatic control are achieved through a newly designed deep learning model. This model is designed to be optimized for loading and unloading equipment and mission environments based on the YOLOv3 structure. The trained model recognized 10 types of palettes with different shapes and colors with an average accuracy of 100% and estimated the state with an accuracy of 99.47%. In addition, control commands were created to insert forks into pallets without failure in 14 scenarios assuming actual loading and unloading situations.

Comparative Evaluation of UAV NIR Imagery versusin-situ Point Photo in Surveying Urban Tributary Vegetation (도심소하천 식생조사에서 현장사진과 UAV 근적외선 영상의 비교평가)

  • Lee, Jung-Joo;Hwang, Young-Seok;Park, Seong-Il;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.475-488
    • /
    • 2018
  • Surveying urban tributary vegetation is based mainly on field sampling at present. The tributary vegetation survey integrating UAV NIR(Unmanned Aerial Vehicle Near Infrared Radiance) imagery and in-situ point photo has received only limited attentions from the field ecologist. The reason for this could be the largely undemonstrated applicability of UAV NIR imagery by the field ecologist as a monitoring tool for urban tributary vegetation. The principal advantage of UAV NIR imagery as a remote sensor is to provide, in a cost-effective manner, information required for a very narrow swath target such as urban tributary (10m width or so), utilizing very low altitude flight, real-time geo-referencing and stereo imaging. An exhaustive and realistic comparison of the two techniques was conducted, based on operational customer requirement of urban tributary vegetation survey: synoptic information, ground detail and quantitative data collection. UAV NIR imagery made it possible to identify area-wide patterns of the major plant communities subject to many different influences (e.g. artificial land use pattern), which cannot be acquired by traditional field sampling. Although field survey has already gained worldwide recognition by plant ecologists as a typical method of urban tributary vegetation monitoring, this approach did not provide a level of information that is either scientifically reliable or economically feasible in terms of urban tributary vegetation (e.g. remedial field works). It is anticipated that this research output could be used as a valuable reference for area-wide information obtained by UAV NIR imagery in urban tributary vegetation survey.

A Design and Implementation of Floor Detection Application Using RC Car Simulator (RC카 시뮬레이터를 이용한 바닥 탐지 응용 설계 및 구현)

  • Lee, Yoona;Park, Young-Ho;Ihm, Sun-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.507-516
    • /
    • 2019
  • Costs invested in road maintenance and road development are on the rise. However, due to accidents such as portholes and ground subsidence, the risks to the drivers' safety and the material damage caused by accidents are also increasing. Following this trend, we have developed a system that determines road damage, according to the magnitude of vibration generated without directly intervening the driver when driving. In this paper, we implemented the system using a remote control car (RC car) simulator due to the limitation of the environment in which the actual vehicle is not available in the process of developing the system. In addition, we attached a vibration sensor and GPS sensor to the body of the RC car simulator to measure the vibration value and location information generated by the movement of the vehicle in real-time while driving, and transmitting the corresponding data to the server. In this way, we implemented a system that allows external users to check the damage of roads and the maintenance of the repaired roads based on data more easily than the existing systems. By using this system, we can perform early prediction of road breakage and pattern prediction based on the data. Further, for the RC car simulator, commercialization will be possible by combining it with business in other fields that require flatness.

Magnetic Guidance Vehicle using Up-and-down Rotating Type Differential Drive Unit (상하 회전형 차동 구동부를 이용한 자기 유도 무인운반차)

  • Song, Hajun;Cho, Hyunhak;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.123-128
    • /
    • 2014
  • This paper presents the study about MGV(Magnetic guidance vehicle) with up-and-down rotating type differential drive unit. Previous MGV needs the landmarks to get the driving information and additional sensor to recognize the landmarks except for localization sensor. Previous MGV requires at least 2 drive units when common fixed differential drive unit is used because it occurs the problems with driving control and localization error from imbalance of the MGV's weight. To solve such problems, we propose the MGV using up-and-down rotating type differential drive unit. Proposed MGV recognizes the driving information from the pattern which is consisted of both pole of magnet without landmarks and additional sensors, and it control the backward movement using up-and-down rotating type differential drive unit instead of common drive units. Proposed MGV considers KF(Kalman filter) to improve the localization accuracy. To verify the performance of proposed method, we designed MGV for the experiment. As the results, we can confirm the performance of propoesed method to recognize the pattern and to control the backward movement. With respect to localization, proposed method has the less RMSE about 5.6904 mm than previous method.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

A Study on Building the HD Map Prototype Based on Web GIS for the Generation of the Precise Road Maps (정밀도로지도 제작을 위한 Web GIS 기반 HD Map 프로토타입 구축 연구)

  • KWON, Yong-Ha;CHOUNG, Yun-Jae;CHO, Hyun-Ji;GU, Bon-Yup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.102-116
    • /
    • 2021
  • For the safe operation of autonomous vehicles, the representative technology of the 4th industrial revolution era, a combination of various technologies such as sensor technology, software technology and car technology is required. An autonomous vehicle is a vehicle that recognizes current location and situation by using the various sensors, and makes its own decisions without depending on the driver. Perfect recognition technology is required for fully autonomous driving. Since the precise road maps provide various road information including lanes, stop lines, traffic lights and crosswalks, it is possible to minimize the cognitive errors that occur in autonomous vehicles by using the precise road maps with location information of the road facilities. In this study, the definition, necessity and technical trends of the precise road map have been analyzed, and the HD(High Definition) map prototype based on the web GIS has been built in the autonomous driving-specialized areas of Daegu Metropolitan City(Suseong Medical District, about 24km), the Happy City of Sejong Special Self-Governing City(about 33km), and the FMTC(Future Mobility Technical Center) PG(Proving Ground) of Seoul National University Siheung Campus using the MMS(Mobile Mapping System) surveying results given by the National Geographic Information Institute. In future research, the built-in precise road map service will be installed in the autonomous vehicles and control systems to verify the real-time locations and its location correction algorithm.

Fat Client-Based Abstraction Model of Unstructured Data for Context-Aware Service in Edge Computing Environment (에지 컴퓨팅 환경에서의 상황인지 서비스를 위한 팻 클라이언트 기반 비정형 데이터 추상화 방법)

  • Kim, Do Hyung;Mun, Jong Hyeok;Park, Yoo Sang;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.59-70
    • /
    • 2021
  • With the recent advancements in the Internet of Things, context-aware system that provides customized services become important to consider. The existing context-aware systems analyze data generated around the user and abstract the context information that expresses the state of situations. However, these datasets is mostly unstructured and have difficulty in processing with simple approaches. Therefore, providing context-aware services using the datasets should be managed in simplified method. One of examples that should be considered as the unstructured datasets is a deep learning application. Processes in deep learning applications have a strong coupling in a way of abstracting dataset from the acquisition to analysis phases, it has less flexible when the target analysis model or applications are modified in functional scalability. Therefore, an abstraction model that separates the phases and process the unstructured dataset for analysis is proposed. The proposed abstraction utilizes a description name Analysis Model Description Language(AMDL) to deploy the analysis phases by each fat client is a specifically designed instance for resource-oriented tasks in edge computing environments how to handle different analysis applications and its factors using the AMDL and Fat client profiles. The experiment shows functional scalability through examples of AMDL and Fat client profiles targeting a vehicle image recognition model for vehicle access control notification service, and conducts process-by-process monitoring for collection-preprocessing-analysis of unstructured data.

지역교차로 교통사고 자동검지시스템 개선을 위한 교차로 제 음향특성의 해석

  • Cho, Eul-Soo;Go, Young-Gwon;Kim, Jae-Yee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.789-792
    • /
    • 2008
  • Actually, The present traffic accident detection system is subsisting limitation of accurate distinction under the crowded condition at intersection because the system depend upon mainly the image information at intersection and digital image processing techniques nearly all. To complement this insufficiency, this article aims to estimate the level of present technology and a realistic possibility by analyzing the acoustic characteristic of crash sound that we have to investigate for improvement of traffic accident detection rate at intersection. The skid sound of traffic accident is showed the special pattern at $1[kHz]{\sim}3[kHz}$ bandwidth when vehicles are almost never operated in and around intersection. Also, the frequency bandwidth of vehicle crash sound is showed sound pressure difference over 30[dB] higher than when there is no occurrence of traffic accident below 500[Hz].

  • PDF