• Title/Summary/Keyword: Vehicle Recognition

Search Result 623, Processing Time 0.027 seconds

Vehicle License Plate Recognition System Using Image Binarization and Template Matching (영상 이진화와 템플릿 매칭을 이용한 자동차 번호판 인식 시스템)

  • Oh, Soojin;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • A vehicle license plate includes the most important information for recognition and classification of the vehicle. In this paper, we propose a vehicle license plate recognition system using image binarization and template matching. In the proposed system, an image of the vehicle license plate is converted into a gray scale image and the gray image undergoes the binarization process. Finally, the numbers on the plate are extracted from the binary image using the template matching algorithm.

Segmentation and Recognition of Korean Vehicle License Plate Characters Based on the Global Threshold Method and the Cross-Correlation Matching Algorithm

  • Sarker, Md. Mostafa Kamal;Song, Moon Kyou
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.661-680
    • /
    • 2016
  • The vehicle license plate recognition (VLPR) system analyzes and monitors the speed of vehicles, theft of vehicles, the violation of traffic rules, illegal parking, etc., on the motorway. The VLPR consists of three major parts: license plate detection (LPD), license plate character segmentation (LPCS), and license plate character recognition (LPCR). This paper presents an efficient method for the LPCS and LPCR of Korean vehicle license plates (LPs). LP tilt adjustment is a very important process in LPCS. Radon transformation is used to correct the tilt adjustment of LP. The global threshold segmentation method is used for segmented LP characters from two different types of Korean LPs, which are a single row LP (SRLP) and double row LP (DRLP). The cross-correlation matching method is used for LPCR. Our experimental results show that the proposed methods for LPCS and LPCR can be easily implemented, and they achieved 99.35% and 99.85% segmentation and recognition accuracy rates, respectively for Korean LPs.

Implementation and Validation of Traffic Light Recognition Algorithm for Low-speed Special Purpose Vehicles in an Urban Autonomous Environment (저속 특장차의 도심 자율주행을 위한 신호등 인지 알고리즘 적용 및 검증)

  • Wonsub, Yun;Jongtak, Kim;Myeonggyu, Lee;Wongun, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.6-15
    • /
    • 2022
  • In this study, a traffic light recognition algorithm was implemented and validated for low-speed special purpose vehicles in an urban environment. Real-time image data using a camera and YOLO algorithm were applied. Two methods were presented to increase the accuracy of the traffic light recognition algorithm, and it was confirmed that the second method had the higher accuracy according to the traffic light type. In addition, it was confirmed that the optimal YOLO algorithm was YOLO v5m, which has over 98% mAP values and higher efficiency. In the future, it is thought that the traffic light recognition algorithm can be used as a dual system to secure the platform safety in the traffic information error of C-ITS.

Development of Color Recognition Algorithm for Traffic Lights using Deep Learning Data (딥러닝 데이터 활용한 신호등 색 인식 알고리즘 개발)

  • Baek, Seoha;Kim, Jongho;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.45-50
    • /
    • 2022
  • The vehicle motion in urban environment is determined by surrounding traffic flow, which cause understanding the flow to be a factor that dominantly affects the motion planning of the vehicle. The traffic flow in this urban environment is accessed using various urban infrastructure information. This paper represents a color recognition algorithm for traffic lights to perceive traffic condition which is a main information among various urban infrastructure information. Deep learning based vision open source realizes positions of traffic lights around the host vehicle. The data are processed to input data based on whether it exists on the route of ego vehicle. The colors of traffic lights are estimated through pixel values from the camera image. The proposed algorithm is validated in intersection situations with traffic lights on the test track. The results show that the proposed algorithm guarantees precise recognition on traffic lights associated with the ego vehicle path in urban intersection scenarios.

Image Tracking Based Lane Departure Warning and Forward Collision Warning Methods for Commercial Automotive Vehicle (이미지 트래킹 기반 상용차용 차선 이탈 및 전방 추돌 경고 방법)

  • Kim, Kwang Soo;Lee, Ju Hyoung;Kim, Su Kwol;Bae, Myung Won;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.235-240
    • /
    • 2015
  • Active Safety system is requested on the market of the medium and heavy duty commercial vehicle over 4.5ton beside the market of passenger car with advancement of the digital equipment proportionally. Unlike the passenger car, the mounting position of camera in case of the medium and heavy duty commercial vehicle is relatively high, it is disadvantaged conditions for lane recognition in contradiction to passenger car. In this work, we show the method of lane recognition through the Sobel edge, based on the spatial domain processing, Hough transform and color conversion correction. Also we suggest the low error method of front vehicles recognition in order to reduce the detection error through Haar-like, Adaboost, SVM and Template matching, etc., which are the object recognition methods by frontal camera vision. It is verified that the reliability over 98% on lane recognition is obtained through the vehicle test.

A Study on Recognition of Both of New & Old Types of Vehicle Plate (신, 구 차량 번호판 통합 인식에 관한 연구)

  • Han, Kun-Young;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.1987-1996
    • /
    • 2009
  • Recently, the color of vehicle license plate has been changed from green to white. Thus the vehicle plate recognition system used for parking management systems, speed and signal violation detection systems should be robust to the both colors. This paper presents a vehicle license plate recognition system, which works on both of green and white plate at the same time. In the proposed system, the image of license plate is taken from a captured vehicle image by using morphological information. In the next, each character region in the license plate image is extracted based on the vertical and horizontal projection of plate image and the relative position of individual characters. Finally, for the recognition process of extracted characters, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis) are sequentially utilized. In the experiment, vehicle license plates of both green background and white background captured under irregular illumination conditions have been tested, and the relatively high extraction and recognition rates are observed.

The FE-MCBP for Recognition of the Tilted New-Type Vehicle License Plate (기울어진 신규차량번호판 인식을 위한 FE-MCBP)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.73-81
    • /
    • 2007
  • This paper presents how to recognize the new-type vehicle license plate using multi-link recognizer after extract the features from characters. In order to assist this task, this paper proposed FE-MCBP to recognize each character that got through image preprocess, extract range of vehicle license plate and extract process of each character. FE-MCBP is the recognizer based on the features of the character, The recognizer is employed to identify the new-type vehicle licence plates which have both the hangul and the arabic numeral characters. And its recognition rate is improved 9.7 percent than the back propagation recognizer before. Also it makes use of extract of linear component and region coordinate generation technology to normalize a image of the tilted vehicle license plate. The recognition system of the new-type vehicle license plate make possible recognize a image of the tilted vehicle license plate when using this system. Also, this system can recognize the tilted or imperfect vehicle licence plates.

  • PDF

In-Vehicle AR-HUD System to Provide Driving-Safety Information

  • Park, Hye Sun;Park, Min Woo;Won, Kwang Hee;Kim, Kyong-Ho;Jung, Soon Ki
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1038-1047
    • /
    • 2013
  • Augmented reality (AR) is currently being applied actively to commercial products, and various types of intelligent AR systems combining both the Global Positioning System and computer-vision technologies are being developed and commercialized. This paper suggests an in-vehicle head-up display (HUD) system that is combined with AR technology. The proposed system recognizes driving-safety information and offers it to the driver. Unlike existing HUD systems, the system displays information registered to the driver's view and is developed for the robust recognition of obstacles under bad weather conditions. The system is composed of four modules: a ground obstacle detection module, an object decision module, an object recognition module, and a display module. The recognition ratio of the driving-safety information obtained by the proposed AR-HUD system is about 73%, and the system has a recognition speed of about 15 fps for both vehicles and pedestrians.

Design and Implementation of Vision Box Based on Embedded Platform (Embedded Platform 기반 Vision Box 설계 및 구현)

  • Kim, Pan-Kyu;Lee, Jong-Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.191-197
    • /
    • 2007
  • Vision system is an object recognition system analyzing image information captured through camera. Vision system can be applied to various fields, and vehicle recognition is ole of them. There have been many proposals about algorithm of vehicle recognition. But have complex calculation processing. So they need long processing time and sometimes they make problems. In this research we suggested vehicle type recognition system using vision bpx based on embedded platform. As a result of testing this system achieves 100% rate of recognition at the optimal condition. But when condition is changed by lighting, noise and angle, rate of recognition is decreased as pattern score is lowered and recognition speed is slowed.

Recognition of Vehicle Number Plate Using Color Decomposition Method and Back Propagation Neural Network (색 분해법과 역전파 신경 회로망을 이용한 차량 번호판 인식)

  • 이재수;김수인;서춘원
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.46-52
    • /
    • 1998
  • In this paper, after inputting the computer with the attached number plate on the vehicle, using it, the color decomposition method and back propagation neural network proposed the extractable method of the vehicle number plate at high speed. This method separated R, G, B signal form input moving vehicle image to computer through video camera, then after transform this R, G, B signal into input image data of the computer by using color depth of vehicle number plate and store up binary value in the memory frame buffer. After adapting character's recognition algorithm, also improving this, by adapting back propagation neural network makes the vehicle number plate recognition system. Also minimalizing the similar color's confusion, adapting horizontal and vertical extracting algorithm by using the vehicle's rectangular architecture shows the extract and character's recognition of the vehicle number plate at high speed.

  • PDF