• Title/Summary/Keyword: Vehicle Recognition

Search Result 616, Processing Time 0.028 seconds

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

Improvement Method of Recognition Rate Using Brightness Control of Vehicle License Plate (차량 번호판 밝기 제어를 이용한 인식률 개선 방안)

  • Lee, Kwang Ok;Bae, Sang Hyun
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.57-63
    • /
    • 2017
  • The most important, essential prerequisite for the improvement of vehicle license plate recognition is the acquisition of high-quality vehicle images. Because typical images acquired from roads are affected by different environmental factors including the time of day, sunlight, and the weather, the brightness and the shape of the license plates in the images are inconsistent. To this end, many image corrections are performed, resulting in slower recognition and lower recognition rate. Therefore, in this study, we used the images acquired from roads to test the proposed method for fast capturing of vivid, high-quality vehicle images by measuring the brightness around license plates during real-time image capturing to control in real time the factors, such as shutter speed, brightness, and gain of the camera, that affect the brightness and the quality of the images.

A Vehicle Recognition Method based on Radar and Camera Fusion in an Autonomous Driving Environment

  • Park, Mun-Yong;Lee, Suk-Ki;Shin, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • At a time when securing driving safety is the most important in the development and commercialization of autonomous vehicles, AI and big data-based algorithms are being studied to enhance and optimize the recognition and detection performance of various static and dynamic vehicles. However, there are many research cases to recognize it as the same vehicle by utilizing the unique advantages of radar and cameras, but they do not use deep learning image processing technology or detect only short distances as the same target due to radar performance problems. Radars can recognize vehicles without errors in situations such as night and fog, but it is not accurate even if the type of object is determined through RCS values, so accurate classification of the object through images such as cameras is required. Therefore, we propose a fusion-based vehicle recognition method that configures data sets that can be collected by radar device and camera device, calculates errors in the data sets, and recognizes them as the same target.

Lidar Based Object Recognition and Classification (자율주행을 위한 라이다 기반 객체 인식 및 분류)

  • Byeon, Yerim;Park, Manbok
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.23-30
    • /
    • 2020
  • Recently, self-driving research has been actively studied in various institutions. Accurate recognition is important because information about surrounding objects is needed for safe autonomous driving. This study mainly deals with the signal processing of LiDAR among sensors for object recognition. LiDAR is a sensor that is widely used for high recognition accuracy. First, we clustered and tracked objects by predicting relative position and speed of objects. The characteristic points of all objects were extracted using point cloud data of each objects through proposed algorithm. The Classification between vehicle and pedestrians is estimated using number of characteristic points and distances among characteristic points. The algorithm for classifying cars and pedestrians was implemented and verified using test vehicle equipped with LiDAR sensors. The accuracy of proposed object classification algorithm was about 97%. The classification accuracy was improved by about 13.5% compared with deep learning based algorithm.

Real-time Vehicle Recognition Mechanism using Support Vector Machines (SVM을 이용한 실시간 차량 인식 기법)

  • Chang, Jae-Khun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1160-1166
    • /
    • 2006
  • The information of vehicle is very important for maintaining traffic order under the present complex traffic environments. This paper proposes a new vehicle plate recognition mechanism that is essential to know the information of vehicle. The proposed method uses SVM which is excellent object classification compare to other methods. Two-class SVM is used to find the location of vehicle plate and multi-class SVM is used to recognize the characters in the plate. As a real-time processing system using multi-step image processing and recognition process this method recognizes several different vehicle plates. Through the experimental results of real environmental image and recognition using the proposed method, the performance is proven.

  • PDF

Algorithm Based on Texture for the Recognition of Vehicles' Model (질감을 이용한 차량모델 인식 알고리즘)

  • Lee Hyo Jong
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.257-264
    • /
    • 2005
  • The number of vehicles are rapidly increased as our society is developed. The vehicle recognition has been studied for a while because many people acknowledged it has critical functions to solve the problems of traffic control or vehicle-related crimes. In this paper a novel method is proposed to recognize vehicle models corresponding makers. Vehicles' models are recognized based on the texture parameters from segmented radiator region above a number plate. A three-layer neural network was built and trained with the texture features for recognition. The proposed method shows $93.7\%$ of recognition rate and $99.7\%$ of specificity for vehicles' model.

Parking Space Recognition for Autonomous Valet Parking Using Height and Salient-Line Probability Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1220-1230
    • /
    • 2015
  • An autonomous valet parking (AVP) system is designed to locate a vacant parking space and park the vehicle in which it resides on behalf of the driver, once the driver has left the vehicle. In addition, the AVP is able to direct the vehicle to a location desired by the driver when requested. In this paper, for an AVP system, we introduce technology to recognize a parking space using image sensors. The proposed technology is mainly divided into three parts. First, spatial analysis is carried out using a height map that is based on dense motion stereo. Second, modelling of road markings is conducted using a probability map with a new salient-line feature extractor. Finally, parking space recognition is based on a Bayesian classifier. The experimental results show an execution time of up to 10 ms and a recognition rate of over 99%. Also, the performance and properties of the proposed technology were evaluated with a variety of data. Our algorithms, which are part of the proposed technology, are expected to apply to various research areas regarding autonomous vehicles, such as map generation, road marking recognition, localization, and environment recognition.

Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System (가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안)

  • Lee, Seungju;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.776-788
    • /
    • 2020
  • In this paper, a vehicle type recognition system using deep learning and a license plate recognition system are proposed. In the existing system, the number plate area extraction through image processing and the character recognition method using DNN were used. These systems have the problem of declining recognition rates as the environment changes. Therefore, the proposed system used the one-stage object detection method YOLO v3, focusing on real-time detection and decreasing accuracy due to environmental changes, enabling real-time vehicle type and license plate character recognition with one RGB camera. Training data consists of actual data for vehicle type recognition and license plate area detection, and synthetic data for license plate character recognition. The accuracy of each module was 96.39% for detection of car model, 99.94% for detection of license plates, and 79.06% for recognition of license plates. In addition, accuracy was measured using YOLO v3 tiny, a lightweight network of YOLO v3.

Feature Area-based Vehicle Plate Recognition System(VPRS) (특징 영역 기반의 자동차 번호판 인식 시스템)

  • Jo, Bo-Ho;Jeong, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.6
    • /
    • pp.1686-1692
    • /
    • 1999
  • This paper describes the feature area-based vehicle plate recognition system(VPRS). For the extraction of vehicle plate in a vehicle image, we used the method which extracts vehicle plate area from a s vehicle image using intensity variation. For the extraction of the feature area containing character from the extracted vehicle plate, we used the histogram-based approach and the relative location information of individual characters in the extracted vehicle plate. The extracted feature area is used as the input vector of ART2 neural network. The proposed method simplifies the existing complex preprocessing the solves the problem of distortion and noise in the binarization process. In the difficult cases of character extraction by binarization process of previous method, our method efficiently extracts characters regions and recognizes it.

  • PDF

Vehicle License Plate Recognition System Using Image Binarization and Template Matching (영상 이진화와 템플릿 매칭을 이용한 자동차 번호판 인식 시스템)

  • Oh, Soojin;Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.7-12
    • /
    • 2014
  • A vehicle license plate includes the most important information for recognition and classification of the vehicle. In this paper, we propose a vehicle license plate recognition system using image binarization and template matching. In the proposed system, an image of the vehicle license plate is converted into a gray scale image and the gray image undergoes the binarization process. Finally, the numbers on the plate are extracted from the binary image using the template matching algorithm.