• Title/Summary/Keyword: Vehicle Parts

Search Result 868, Processing Time 0.044 seconds

A Study on Waveform Analysis of Oxygen Sensor, Injector and Secondary Waveform through Emission Characteristics by a Decrepit Vehicle (노후 차량의 배기가스 측정을 이용한 산소센서, 인젝터, 점화2차파형의 파형분석 연구)

  • Yoo, Jongsik;Kim, Chulsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.151-156
    • /
    • 2013
  • The experiment was done on cars travelling at the speeds of 20km/h, 60km/h and 100km/h using the performance testing mode for chassis dynamometer. In this experiment, the relativity between the secondary waveform coming from ignition coil and exhaust emissions were measured in case of cars with failures, in oxygen sensor, spark plugs. The following results obtained by analysis of the relativity between the secondary waveform and exhaust emissions. 1) When the oxygen sensor is failure, the average value of CO emission measured was 6.8 times higher than the standard CO emission value and the average value of HC emission measured was 2.3 times higher than the standard emission level. 2) When engine parts are in failure, more fuel enters the cylinder due to longer opening duration of injector, and it tended to make CO and HC emission values increase. 3) Combustion duration, the shape of flame propagation during spark line, and the size of the discharge-induced energy were the three main elements that directly cause variations in CO and HC emission values.

A Verification of the Contact Dynamics of the Current Collection System on a Test Run (실차실험에 의한 집전계의 접촉 동특성 규명)

  • Kim, Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.414-419
    • /
    • 2007
  • The contact characteristics of the current collection system are investigated by analyzing data collected during a test run of the Korean high speed rail vehicle. For the analysis, the signals from accelerometers and load cells attached to the various parts of the pantograph are analyzed in both the time and frequency domains. In the frequency domain, the pantograph response consists of low frequency components related to the rigid-body motion of the panhead assembly and high frequency components due to the structural vibration modes of the pantograph. The analysis shows that the inclusion of the high frequency structural vibration modes of the pantograph in the contact force calculation has a negligible effect on the predicted mean value of the contact force but significantly affects the magnitude of its fluctuations. This finding implies that numerical simulations using lumped element models of the pantograph may accurately predict the mean contact force but is limited in its capacity for predicting the fluctuation about the mean. Since the ratio of the fluctuation to the mean in the contact force increases with increased train speed, the limitation of the predictions based on numerical simulation results becomes more pronounced at higher train speed.

A Study for Developing of Rail Bridge Inspection Robot (철도교량 자동화 로봇 개발을 위한 기초 연구)

  • Koo, Ja-Kyung;Hwang, In-Ho;Lee, Jong-Seh;Lee, Tai-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.188-193
    • /
    • 2008
  • According to introduce KTX in Korea, rail-road bridge section of KTX was increased approximately 50% of the total length. Bridge is required periodic inspection and check to prevent accident and hazard because various damage which have effects on traffic and replacement of damaged parts is difficult. Specifically, the train as large-scale transportation because accidents led to great damage, preventing these accidents are critical. Well-organized management and maintenance systems are required to prevent the accidents. In the case of roadway bridge, bridge inspection vehicle is used to deploy inspectors in roadway bridge. However, this method requires a lot of time and efforts, and inspectors are exposed to potential hazard. Also, surrounding environment like poor lighting system or electric wire could harm the inspector while repairing. Due to this reason, automatic repairing and inspecting system have been introduced to replace the old methods. Management system of the railroad bridge track for trains uses various advanced equipments, but whereas roadway bridge management system is lacking these efforts. As a result of that, this study looks over the existing management method. and review the method to apply the Bridge Inspection Robot in railroad bridge. Moreover, this study suggests future management technology using inspection robot.

  • PDF

A Study on Hydrogen Embrittlement Research on Automotive Steel Sheets (자동차 강재의 수소취성 연구에 대한 고찰)

  • Yang, Won Seog;Seo, Ji Won;Ahn, Seung Ho
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.193-201
    • /
    • 2018
  • In order to suppress $CO_2$ emission and protect passengers in case of vehicle collision, continuous efforts are being made to increase the application ratio and tensile strength of advanced high strength steels used in the manufacturing of automotive body. Simultaneously, hydrogen embrittlement which was not a concern in the past has currently become a major issue due to microstructure that is sensitive to hydrogen uptake. The sensitivity increases with residual stress and hydrogen uptake content. Many automotive OEM companies and mill makers are setting specifications to control hydrogen embrittlement. The factors which lead to hydrogen embrittlement are material sensitivity, residual stress, and hydrogen concentration; researches are in progress to develop countermeasures. To reduce material sensitivity, mill makers add high energy trap elements or microstructure refinement elements. Automotive OEM companies design the car parts not to concentrate local stress. And they manage the levels to not to exceed critical hydrogen concentration. In this article, we have reviewed hydrogen embrittlement evaluation methods and corresponding solutions that are being studied in automobile manufacturing industries and mill makers.

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

A study on wear damage of SKD11 steel material for a cutting mold jig (SKD11 절단금형치구용 소재의 마모손상에 관한 연구)

  • Nam, Ki-Woo;Kim, Cheol-Su;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.5-13
    • /
    • 2016
  • This study is on wear damage of the material for a molding machine that be used at finally cutting of metal beam made in roll forming process of vehicle bump beam process line. SKD11 steel was used with the material for cutting mold jig. In the cutting mold jig, Ti diffusion heat treatment after vacuum heat treatment was carried out for upgrade of surface hardness and anti-wear. Also, the heat treatments by various methods were performed to compare the wear damage degree against above the existing heat treatment. Wear loss and friction coefficient were obtained from wear test. And, micro Vickers hardness values were compared with damaged parts or not of cutting mold jig. Micro Vickers hardness value appeared higher at the undamaged part by Ti diffusion heat treatment. The micro Vickers hardness well followed a two-parameter Weibull probability distribution.

Prediction of Mechanical Behavior for Carbon Black Added Natural Rubber Using Hyperelastic Constitutive Model

  • Kim, Beomkeun
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.308-316
    • /
    • 2016
  • The rubber materials are widely used in automobile industry due to their capability of a large amount of elastic deformation under a force. Current trend of design process requires prediction of functional properties of parts at early stage. The behavior of rubber material can be modeled using strain energy density function. In this study, five different strain energy density functions - Neo-Hookean model, Reduced Polynomial $2^{nd}$ model, Ogden $3^{rd}$ model, Arruda Boyce model and Van der Waals model - were used to estimate the behavior of carbon black added natural rubber under uniaxial load. Two kinds of tests - uniaxial tension test and biaxial tension test - were performed and used to correlate the coefficients of the strain energy density function. Numerical simulations were carried out using finite element analysis and compared with experimental results. Simulation revealed that Ogden $3^{rd}$ model predicted the behavior of carbon added natural rubber under uniaxial load regardless of experimental data selection for coefficient correlation. However, Reduced Polynomial $2^{nd}$, Ogden $3^{rd}$, and Van der Waals with uniaxial tension test and biaxial tension test data selected for coefficient correlation showed close estimation of behavior of biaxial tension test. Reduced Polynomial $2^{nd}$ model predicted the behavior of biaxial tension test most closely.

Design and Analysis for the POD Type Waterjet System (POD형 물분사 추진장치의 설계 및 성능해석)

  • Kim, Moon-Chan;Chun, Ho-Hwan;Park, Won-Kyu;Byun, Tae-Young;Kim, Jong-Hyun;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.290-298
    • /
    • 2005
  • A study of design and analysis for the POD type waterjet is conducted. The analysis and design of waterjet system are more difficult than that of conventional propulsor because waterjet is complicatedly composed of many parts which are impeller, stator, inlet, nozzle, etc. The streamline method is traditionally used in the design of pump whose characteristics are similar to those of waterjet. This streamline method, however, has some limitation in analysis of a viscous flow as well as the interaction of inlet part of hull. In the present study, the developed CFD program is applied to the analysis of POD type waterjet. The developed program is first validated by comparing the existed experimental results. The designed waterjet system is also analyzed by the developed CFD program and analyzed results show that the performance of the present POD type waterjet is above the requirement.

A Study on Auto Code Generation for High Performance Motor Control using the Simulink (Simulink 기반 자동차용 모터 고성능 제어를 위한 자동코드 생성에 관한 연구)

  • Lee, Geun-Ho;Hahm, Seung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1125-1131
    • /
    • 2013
  • Nowadays, embedded software development using the MATLAB/Simulink system is gradually emerging. Studies generating the parts of embedded S/W in a Rapid Prototype are presented. In this paper, a method to generate the entire embedded S/W of enhanced AC motor control is proposed. High performance motor control could not be achieved with the basic Simulink library and RAppID Toolbox library as it does not have PWM based Interrupt, an ASAC (Analog Sensing for AC Motors) function and other special functions of the Freescale MPC555x. Consequently, the required libraries for enhanced AC motor control are created by Legacy code tool, TLC (Target Language Compiler) and S-Function (System-Function) of MATLAB/ Simulink and utilized in the Rapid Prototype. Motor control performance and execution time are compared automatically to the generated-code S/W with the hand coded S/W. The IPMSM (Interior Permanent Magnet Synchronous Motor) and MPC5553 board that were designed as the AC motor controller for hybrid electrical vehicle are used for the test. The performances meet the requirements and satisfactory results are acquired.

A high-speed complex multiplier based on redundant binary arithmetic (Redundant binary 연산을 이용한 고속 복소수 승산기)

  • 신경욱
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.2
    • /
    • pp.29-37
    • /
    • 1997
  • A new algorithm and parallel architecture for high-speed complex number multiplication is presented, and a prototype chip based on the proposed approach is designed. By employing redundant binary (RB) arithmetic, an N-bit complex number multiplication is simplified to two RB multiplications (i.e., an addition of N RB partial products), which are responsible for real and imaginary parts, respectively. Also, and efficient RB encoding scheme proposed in this paper enables to generate RB partial products without additional hardware and delay overheads compared with binary partial product generation. The proposed approach leads to a highly parallel architecture with regularity and modularity. As a results, it results in much simpler realization and higher performance than the classical method based on real multipliers and adders. As a test vehicle, a prototype 8-b complex number multiplier core has been fabricated using $0.8\mu\textrm{m}$ CMOS technology. It contains 11,500 transistors on the area of about $1.05 \times 1.34 textrm{mm}^2$. The functional and speed test results show that it can safely operate with 200 MHz clock at $V_{DD}=2.5 V$, and consumes about 90mW.

  • PDF