• Title/Summary/Keyword: Vehicle Load Test

Search Result 446, Processing Time 0.028 seconds

A Study on Heat Flux Characteristics of Tubular Quartz Lamp for Thermal Load Design of High Temperature Structural Test (석영 가열램프의 열 유속 특성 파악을 통한 고온 구조시험의 열 하중 설계에 관한 연구)

  • Kim, Junhyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2022
  • Development of supersonic flying vehicle is one of the most latest issue in modern military technology. Specifically, structural integrity of supersonic flying vehicle can be verified by high temperature structural test. High temperature structural test is required to consider thermal load caused by aerodynamic heating while applying structural load simultaneously. Tubular quartz lamps are generally used to generate thermal load by emitting infrared radiation. In this study, modified heat flux model of tubular quartz lamp is proposed based on existing model. Parameters of the proposed model are optimized upon measured heat flux in three dimensions. Finally, thermal load of plate specimen is designed by the heat flux model. In conclusion, it is possible to predict heat flux applied on plate specimen and desired thermal load of high temperature structural test can be obtained.

Load test of wheel-set for derailment coefficient measurement that have plane style wheel plate (평면형 차륜 형상을 가진 탈선계수 측정용 윤축의 하중시험)

  • Ham Young-Sam;Hong Jai-Sung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.228-233
    • /
    • 2004
  • A derailment coefficient of railway vehicle is as one of important element that estimate running safety. Derailment coefficient is ratio of lateral load/vertical load happens in contact point between wheel and rail. Lateral load increases, dangerous of derailment can rise. There are ground and vehicle to measurement method of these derailment coefficient. Method of ground is simple, but when vehicles passes data of a point, there is shortcoming that acquire locally. Curved surface style wheel shape that use so far among vehicle method in this research wishes to be not but describe about static load test of wheel-set for derailment coefficient measurement that have plane plate shape that manufacture separate way and correction result etc. to test.

  • PDF

Accelerated Life Evaluation of Drive Shaft Using Vehicle Load Spectrum Modeling (차량 부하 스펙트럼 모델링을 이용한 구동축의 가속 수명 평가)

  • Kim, Do Sik;Lee, Geun Ho;Kang, E-Sok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • This paper proposes an accelerated life evaluation of drive shaft for the power train parts of special purpose vehicle. It is necessary the real load data of usage level driving load condition for life evaluation of power train parts, but we can't get the load spectrum data for evaluation in many case of special purpose vehicle. So, in this paper, the road load spectrum data for evaluation is created by modeling and simulation based on vehicle data and special road condition. The inverse power model is used for accelerated life test. The equivalent torque of load spectrum is achieved using the Miner's Rule. This paper also proposes the calibrated acceleration life test method for drive shaft. The fatigue test is performed through three stress levels. The lifetime at normal stress level is predicted by extrapolation, and is verified through comparison of experimental results and load spectrum data.

Determination of a Duty Cycle for Tracked Vehicle Using Genetic algorithm (유전자알고리즘을 이용한 궤도차량 동력장치의 주행부하주기 도출)

  • Oh Chul-Sung;Im Hyung-Eun;Hwang Won-Gul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.154-161
    • /
    • 2005
  • The durability of a vehicle is a very important performance which can be evaluated from endurance test. This study developed a procedure for determination of a duty cycle theoretically. Vehicle load data is classified and rearranged using standard test road profile. A load pattern and a duty cycles are extracted from classified vehicle data using genetic algorithm. A duty cycle could be utilized in dynamo test to meet required test mileage. The derived duty cycles have been verified by fatigue test through the dynamometer test.

Study of Road Load of Electric Two-Wheeled Vehicle (전기이륜차의 도로부하 설정에 관한 연구)

  • Kil, Bum-Soo;Kim, Gang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.525-531
    • /
    • 2011
  • Recently, the demand of environmentally friendly transportation has increased due to the environmental issues. Electric two-wheeled vehicles do not have the noise pollution nor exhaust gases of vehicles with internal combustion engines. Performance evaluation of an electric two-wheeled vehicle was carried out. A driving test on outdoor roads was performed and a chassis dynamometer was used. The chassis dynamometer simulates the road load of the vehicle. The road load influences the tests using the chassis dynamometer. The differences between the table method and the coasting test for setting the road load was compared and analyzed.

Improved Prediction of Lift-off Acoustic Loads for a Launch Vehicle (발사체 이륙 시 음향 하중 예측 정확도 향상)

  • Choi, Sang-Hyeon;Ih, Jeong-Guon;Lee, Ik-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.207-210
    • /
    • 2014
  • This paper is concerned with the prediction of lift-off acoustic loads for a launch vehicle. Intense acoustic load is generated when a launch vehicle is lifted off, and it can induce vibrations of a launch vehicle which cause damage or malfunction of a launch vehicle and a satellite. Lift-off acoustic loads of NARO are predicted by the modified Eldred's second method and the result is compared with the measured data in flight test. The prediction shows similar peak and shape of spectrum to the test data, but some discrepancy can be observed due to the predicted margin. In order to reduce such discrepancy, the sound pressure levels with four source distribution assumptions are calculated. Also, the surface diffraction effects are considered in the predict ion of lift-off acoustic loads, and the predicted result is more similar to the test data.

  • PDF

An Improvement for Determining Response Modification Factor in Bridge Load Rating (응력보정계수 산정 방법 개선)

  • Koo, Bong-Kuen;Shin, Jae-In;Lee, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.169-175
    • /
    • 2001
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by response modification factor that is determined from comparisons of measured values and analysis results. The response modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and response modification factor are investigated, and a new method for evaluating response modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

  • PDF

An Evaluation of Structural Test and Analysis for Composites Vehicle Structures of Automatic Guideway Transit (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1103-1108
    • /
    • 2009
  • This paper describes the results of structural test and finite element analysis for rubber wheel-type Automatic Guideway Transit(AGT) made of aluminum honeycomb sandwich composites with WR580/NF4000 glass-fabric epoxy laminate face sheets. The static tests of vehicle structure were conducted according to JIS E7l05. These static tests have been done under vertical load, compressive load and 3-point support load. The structural integrity of AGT vehicle structure was evaluated by displacement, stress obtained from LVDT and strain gauges, and natural frequency. And finite element analysis using Ansys v11.0 was done to compare with the results of static test. The result showed that the results of structural integrity for static test were in an good agreement with these of finite element analysis.

  • PDF

An Improved Method for Determining Response Correction Factor in Bridge Load Rating (교량응력보정계수 산정방법 개선)

  • 신재인;이상순;이상달
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1273-1278
    • /
    • 2000
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by stress modification factor that is determined from comparisons of measured values and analysis results The stress modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and stress modification factor are investigated, and a new method for evaluating stress modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

Load Test Method of Vehicle Body and Bogie Frame for Urban Maglev Vehicle (도시형 자기부상열차의 차체 및 대차프레임 하중시험방법)

  • Han, Jeong-Woo;Kim, Jae-Dong;Huh, Young-Cheol;Han, Sung-Wook;Kim, Beom-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.924-930
    • /
    • 2011
  • Maglev vehicle has two parts a vehicle body and a series of bogies. The vehicle body is connected through a pneumatic suspension on the bogie frame operating loads, vehicle weight and passengers, repeatedly during the service life. The bogie frame plays an important role in sustaining the weight of the vehicle body and controlling the magnets in the correct alignment to meet requirements of stable running on railway. It is also subjected to the levitation and guidance force and propulsion force generated by electromagnets and linear induction motor (LIM) respectively. To guarantee a vehicle system, it is necessary to identify a load test method with proper loads that the vehicle is expected to experience while in service. In this paper, a test method was proposed to verify the structural safety of vehicle body and bogie frame that are applied to an EMS(electromagnetic suspension)-type urban Maglev vehicle considering in case of not only running on the ground but also levitated running.

  • PDF