• Title/Summary/Keyword: Vehicle License Plate

Search Result 158, Processing Time 0.024 seconds

Vehicle Recognition with Recognition of Vehicle Identification Mark and License Plate (차량 식별마크와 번호판 인식을 통한 차량인식)

  • Lee Eung-Joo;Kim Sung-Jin;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1449-1461
    • /
    • 2005
  • In this paper, we propose a vehicle recognition system based on the classification of vehicle identification mark and recognition of vehicle license plate. In the proposed algorithm, From the input vehicle image, we first simulate preprocessing procedures such as noise reduction, thinning etc., and detect vehicle identification mark and license plate region using the frequency distribution of intensity variation. And then, we classify extracted vehicle candidate region into identification mark, character and number of vehicle by using structural feature informations of vehicle. Lastly, we recognize vehicle informations with recognition of identification mark, character and number of vehicle using hybrid and vertical/horizontal pattern vector method. In the proposed algorithm, we used three properties of vehicle informations such as Independency property, discriminance property and frequency distribution of intensity variation property. In the vehicle images, identification mark is generally independent of the types of vehicle and vehicle identification mark. And also, the license plate region between character and background as well as horizontal/vertical intensity variations are more noticeable than other regions. To show the efficiency of the propofed algorithm, we tested it on 350 vehicle images and found that the propofed method shows good Performance regardless of irregular environment conditions as well as noise, size, and location of vehicles.

  • PDF

A Car License Plate Recognition Using Colors Information, Morphological Characteristic and Neural Network (컬러 정보 및 형태학적 특징과 신경망을 이용한 차량 번호판 인식)

  • Cho, Jae-Hyun;Yang, Hwang-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.304-308
    • /
    • 2010
  • In this paper, we propose a new method of recognizing the vehicle license plate using color space, morphological characteristics and ART2 algorithm. Morphological characteristics of old and/or new style vehicle license plate among the candidate regions are applied to remove noise areas using 8-directional contour tracking algorithm, then follow by the extraction of vehicle plate. From the extracted license plate area, plate morphological characteristics of each region are removed. After that, labeling algorithm to extract the individual characters are then combined. The classified individual character and numeric codes are applied to the ART2 algorithm for the learning and recognition. In order to evaluate the performance of our proposed extraction and recognition of vehicle license method, we have run experiments on 100 green plates and white plates. Experimental results shown that the proposed license plate extraction and recognition method was effective.

Vehicle License Plate Recognition Using the Training Data's Annexation (훈련예제 병합을 이용한 자동차 차량번호판 문자인식 성능 향상 방안)

  • Baik, Nam Cheol;Lee, Sang Hyup;Ryu, Kwang Ryul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.349-352
    • /
    • 2006
  • To cope with traffic congestion, traffic accidents and lack of parking facilities, caused by dramatic increase in total vehicle number, vigorous researches on managing vehicles efficiently are done, both domestically and internationally. The vehicle license plate recognition makes effective management of traffic possible, with its wide application in many fields, covering from speed enforcement, collecting toll, stolen vehicle detection to parking management. The vehicle license plate recognition system causes high cost for collecting training data. Many researches are done by using the virtual sample method, which can be effective for utilizing limited number of training data by generating virtual sample. This paper investigates techniques to improve the performance of vehicle license plate recognition by using the training data's annexation. Also, popular methods for virtual sample creation used for text recognition algorithm are analyzed and their effectiveness is verified.

A Study on the Vehicle License Plate Recognition Using Convolutional Neural Networks(CNNs) (CNN 기법을 이용한 자동차 번호판 인식법 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.7-11
    • /
    • 2023
  • In this study, we presented a method to recognize vehicle license plates using CNN techniques. A vehicle plate is normally used for the official identification purposes by the authorities. Most regular Optical Character Recognition (OCR) techniques perform well in recognizing printed characters on documents but cannot make out the registration number on the number plates. Besides, the existing approaches to plate number detection require that the vehicle is stationary and not in motion. To address these challenges to number plate detection we make the following contributions. We create a database of captured vehicle number plate's images and recognize the number plate character using Convolutional Neural Networks. The results of this study can be usefully used in parking management systems and enforcement cameras.

A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm (Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식)

  • Park, SeungHyun;Cho, Seongwon
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • This paper proposes an effective algorithm of Korean license plate recognition. By applying Haar-like feature and Canny edge detection on a captured vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are classified using neural networks trained by backpropagation algorithm to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

Vehicle Information Recognition and Electronic Toll Collection System with Detection of Vehicle feature Information in the Rear-Side of Vehicle (차량후면부 차량특징정보 검출을 통한 차량정보인식 및 자동과금시스템)

  • 이응주
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • In this paper, we proposed a vehicle recognition and electronic toll collection system with detection and classification of vehicle identification mark and emblem as well as recognition of vehicle license plate to unman toll fee collection system or incoming/outcoming vehicles to an institution. In the proposed algorithm, we first process pre-processing step such as noise reduction and thinning from the rear side input image of vehicle and detect vehicle mark, emblem and license plate region using intensity variation informations, template masking and labeling operation. And then, we classify the detected vehicle features regions into vehicle mark and emblem as well as recognize characters and numbers of vehicle license plate using hybrid and seven segment pattern vector. To show the efficiency of the proposed algorithm, we tested it on real vehicle images of implemented vehicle recognition system in highway toll gate and found that the proposed method shows good feature detection/classification performance regardless of irregular environment conditions as well as noise, size, and location of vehicles. And also, the proposed algorithm may be utilized for catching criminal vehicles, unmanned toll collection system, and unmanned checking incoming/outcoming vehicles to an institution.

  • PDF

A Vehicle License Plate Detection Scheme Using Spatial Attentions for Improving Detection Accuracy in Real-Road Situations

  • Lee, Sang-Won;Choi, Bumsuk;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.93-101
    • /
    • 2021
  • In this paper, a vehicle license plate detection scheme is proposed that uses the spatial attention areas to detect accurately the license plates in various real-road situations. First, the previous WPOD-NET was analyzed, and its detection accuracy is evaluated as lower due to the unnecessary noises in the wide detection candidate areas. To resolve this problem, a vehicle license plate detection model is proposed that uses the candidate area of the license plate as a spatial attention areas. And we compared its performance to that of the WPOD-NET, together with the case of using the optimal spatial attention areas using the ground truth data. The experimental results show that the proposed model has about 20% higher detection accuracy than the original WPOD-NET since the proposed scheme uses tight detection candidate areas.

A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector (명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식)

  • Lee, Eung-Ju;Seok, Yeong-Su
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.369-374
    • /
    • 2002
  • In this paper, we propose the react-time car license plate recognition algorithm using intensity variation and geometric pattern vector. Generally, difference of car license plate region between character and background is more noticeable than other regions. And also, car license plate region usually shows high density values as well as constant intensity variations. Based on these characteristics, we first extract car license plate region using intensity variations. Secondly, lightness compensation process is performed on the considerably dark and brightness input images to acquire constant extraction efficiency. In the proposed recognition step, we first pre-process noise reduction and thinning steps. And also, we use geometric pattern vector to extract features which independent on the size, translation, and rotation of input values. In the experimental results, the proposed method shows better computation times than conventional circular pattern vector and better extraction results regardless of irregular environment lighting conditions as well as noise, size, and location of plate.

Color Segmentation of Vehicle License Plates in the RGB Color Space Using Color Component Binarization (RGB 색상 공간에서 색상 성분 이진화를 이용한차량 번호판 색상 분할)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.49-54
    • /
    • 2014
  • This paper proposes a new color segmentation method of vehicle license plates in the RGB color space. Firstly, the proposed method shifts the histogram of an input image rightwards and then stretches the image of the histogram slide. Secondly, the method separates each of the three RGB color components and performs the adaptive threshold processing with the three components, respectively. Finally, it combines the three components under the condition of making up a segment color and removes noises with the morphological processing. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using real vehicle images. The results show that the proposed algorithm is successful for most vehicle images. However, the method fails in some vehicles when the body and the license plate have the same color.

A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning (메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식)

  • Park, Seung-Hyun;Cho, Seong-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.705-711
    • /
    • 2011
  • This paper proposes an effective algorithm of license plate recognition for industrial applications. By applying Canny edge detection on a vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are compared with the pre-learned weighting values by backpropagation neural network to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.