• 제목/요약/키워드: Vehicle Detection Systems

검색결과 481건 처리시간 0.031초

깊이 정보로 평면 유사도 측정을 통한 자동차 번호판 검출 방법 (Vehicle Plate Detection Method by Measuring Plane Similarity Using Depth Information)

  • 이동석;권순각
    • 한국산업정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.47-55
    • /
    • 2019
  • 본 논문에서는 조명의 영향을 받지 않는 깊이 정보를 이용한 번호판 검출 방법을 제안한다. 깊이 정보를 통해 블록 내 화소들의 3차원 카메라 좌표를 구하고, 이를 통해 블록 내 평면의 인자를 계산한다. 그 후 인접한 블록간의 평면의 법선 벡터들을 비교하여 유사도를 측정한다. 평면 유사도가 높을 경우 두 블록이 한 평면에 속해 있다고 간주하여 그룹화함으로써 평면 영역을 검출한다. 검출된 평면 영역에 대해 깊이 정보를 이용하여 영역의 높이와 너비를 실제 번호판과 비교하여 번호판을 검출한다.

Real Time Multiple Vehicle Detection Using Neural Network with Local Orientation Coding and PCA

  • Kang, Jeong-Gwan;Oh, Se-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.636-639
    • /
    • 2003
  • In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.

  • PDF

이동 객체용 능동 안전시스템 및 UWB 레이더 기술 분석 (Analysis of Active Safety System and UWB Radar Technology for Vehicle)

  • 김상동;이종훈
    • 대한임베디드공학회논문지
    • /
    • 제3권3호
    • /
    • pp.167-174
    • /
    • 2008
  • This paper presents the technology trend of various active safety systems for vehicle. The safety system is applied to various industry fields and is expected to be spread all over the market. So far, good examples of the developed active safety systems are ACC(Adaptive Cruise Control), CMS(Collision Mitigation Systems) and APSS(Active Pedestrian Safety Systems). And, a basic operation principle, system model and detection performance in a UWB radar for vehicle is investigated.

  • PDF

Fault Detection System for Front-wheel Sleeving Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang;Kim, Jin-Ho;Ha, Ju-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.45.3-45
    • /
    • 2001
  • This paper deal with a fault detection algorithm for front wheel passenger car systems by using robust $H{\infty}$ control theory. Firstly, we present a unified formulation of vehicle dynamics for front wheel car systems and transform this formulation into state space form. Also, by considering the cornering stiffness which depends on the tyre-road contact conditions, a multiplicative uncertainty for vehicle model is described. Next, the failures of sensor and actuator for vehicle system are defined in which the fault .lter is considered. From the nominal vehicle model, an augmented system includes the multiplicative uncertainty and the model of fault filter is proposed. Lastly by using $H{\infty}$ norm property the fault detect conditions are deefi.ned, and the actuator and sensor failures are detected and isolated by designing the robust $H{\infty}$ controller, respectively.

  • PDF

Detection Filter를 적용한 two-motor구동방식 전기자동차의 고장감지에 관한 연구 (Application of the fault detection filter to detect the dynamic faults of a two-motor driven electric vehicle system)

  • 김병기;장태규;박정우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.341-344
    • /
    • 1997
  • This paper presents a dynamics failure detection algorithm developed for the two-motor-driven electric vehicle system. The algorithm is based on the application of the fault detection filter. The fault detection includes the identification of sudden pressure drops of the two rear tires in driving axis and dynamics faults of the two inverter-motor-paired actuators An E.V. dynamics simulator is developed, which includes the modeling of the E.V. dynamics as well as the driving dynamics. The simulator, which allows the generation of various fault situations, is utilized in the verification of the developed fault detection algorithm. The results of the simulations are also presented.

  • PDF

Vision 시스템을 이용한 위험운전 원인 분석 프로그램 개발에 관한 연구 (Development of a Cause Analysis Program to Risky Driving with Vision System)

  • 오주택;이상용
    • 한국ITS학회 논문지
    • /
    • 제8권6호
    • /
    • pp.149-161
    • /
    • 2009
  • 차량의 전자제어 시스템은 운전자의 안전을 확보하려는 법률적, 사회적 요구에 발맞추어 빠르게 발달하고 있으며, 하드웨어의 가격하락과 센서 및 프로세서의 고성능화에 따라 레이더, 카메라, 레이저와 같은 다양한 센서를 적용한 다양한 운전자 지원 시스템 (Driver Assistance System)이 실용화되고 있다. 이에 본 연구에서는 CCD 카메라로부터 취득되는 영상을 이용하여 실험차량의 주행 차선 및 주변에 위치하거나 접근하는 차량을 인식할 수 있는 프로그램을 개발하였으며, 선행 연구에서 개발된 위험운전 판단 알고리즘과 통합하여 위험운전에 대한 원인 및 결과를 분석 할 수 있는 Vision 시스템 기반 위험운전 분석 프로그램을 개발하였다. 본 연구에서 개발한 위험운전 분석 프로그램은 위험운전판단 알고리즘의 판단변수인 차량 거동 데이터와 차선 및 차량인식 프로그램에서 획득된 정보와 융합하여 위험운전 행위의 원인 및 결과를 효과적으로 분석할 수 있을 것으로 판단된다.

  • PDF

Practical Study about Obstacle Detecting and Collision Avoidance Algorithm for Unmanned Vehicle

  • Park, Eun-Young;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.487-490
    • /
    • 2003
  • In this research, we will devise an obstacle avoidance algorithm for a previously unmanned vehicle. Whole systems consist mainly of the vehicle system and the control system. The two systems are separated; this system can communicate with the vehicle system and the control system through wireless RF (Radio Frequency) modules. These modules use wireless communication. And the vehicle system is operated on PIC Micro Controller. Obstacle avoidance method for unmanned vehicle is based on the Virtual Force Field (VFF) method. An obstacle exerts repulsive forces and the lane center point applies an attractive force to the unmanned vehicle. A resultant force vector, comprising of the sum of a target directed attractive force and repulsive forces from an obstacle, is calculated for a given unmanned vehicle position. With resultant force acting on the unmanned vehicle, the vehicle's new driving direction is calculated, the vehicle makes steering adjustments, and this algorithm is repeated.

  • PDF

Fast, Accurate Vehicle Detection and Distance Estimation

  • Ma, QuanMeng;Jiang, Guang;Lai, DianZhi;cui, Hua;Song, Huansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.610-630
    • /
    • 2020
  • A large number of people suffered from traffic accidents each year, so people pay more attention to traffic safety. However, the traditional methods use laser sensors to calculate the vehicle distance at a very high cost. In this paper, we propose a method based on deep learning to calculate the vehicle distance with a monocular camera. Our method is inexpensive and quite convenient to deploy on the mobile platforms. This paper makes two contributions. First, based on Light-Head RCNN, we propose a new vehicle detection framework called Light-Car Detection which can be used on the mobile platforms. Second, the planar homography of projective geometry is used to calculate the distance between the camera and the vehicles ahead. The results show that our detection system achieves 13FPS detection speed and 60.0% mAP on the Adreno 530 GPU of Samsung Galaxy S7, while only requires 7.1MB of storage space. Compared with the methods existed, the proposed method achieves a better performance.

Aerial Dataset Integration For Vehicle Detection Based on YOLOv4

  • Omar, Wael;Oh, Youngon;Chung, Jinwoo;Lee, Impyeong
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.747-761
    • /
    • 2021
  • With the increasing application of UAVs in intelligent transportation systems, vehicle detection for aerial images has become an essential engineering technology and has academic research significance. In this paper, a vehicle detection method for aerial images based on the YOLOv4 deep learning algorithm is presented. At present, the most known datasets are VOC (The PASCAL Visual Object Classes Challenge), ImageNet, and COCO (Microsoft Common Objects in Context), which comply with the vehicle detection from UAV. An integrated dataset not only reflects its quantity and photo quality but also its diversity which affects the detection accuracy. The method integrates three public aerial image datasets VAID, UAVD, DOTA suitable for YOLOv4. The training model presents good test results especially for small objects, rotating objects, as well as compact and dense objects, and meets the real-time detection requirements. For future work, we will integrate one more aerial image dataset acquired by our lab to increase the number and diversity of training samples, at the same time, while meeting the real-time requirements.

에지특징의 단계적 조합과 수평대칭성에 기반한 선행차량검출 (Detection of Preceding Vehicles Based on a Multistage Combination of Edge Features and Horizontal Symmetry)

  • 송광열;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.679-688
    • /
    • 2008
  • This paper presents an algorithm capable of detecting leading vehicles using a forward-looking camera. In fact, the accurate measurements of the contact locations of vehicles with road surface are prerequisites for the intelligent vehicle technologies based on a monocular vision. Relying on multistage processing of relevant edge features to the hypothesis generation of a vehicle, the proposed algorithm creates candidate positions being the left and right boundaries of vehicles, and searches for pairs to be vehicle boundaries from the potential positions by evaluating horizontal symmetry. The proposed algorithm is proven to be successful by experiments performed on images acquired by a moving vehicle.