DOI QR코드

DOI QR Code

Vehicle Plate Detection Method by Measuring Plane Similarity Using Depth Information

깊이 정보로 평면 유사도 측정을 통한 자동차 번호판 검출 방법

  • 이동석 (동의대학교 컴퓨터소프트웨어공학과) ;
  • 권순각 (동의대학교 컴퓨터소프트웨어공학과)
  • Received : 2019.03.27
  • Accepted : 2019.04.15
  • Published : 2019.04.30

Abstract

In this paper, we propose a method for vehicle plate detection using depth information which is not influenced by illumination. The 3D camera coordinates of pixels in each block are obtained by using the depth information. Factors of the plane in the block are calculated by 3D coordinates of pixels. After that, the plane similarity between adjacent blocks is calculated by comparing between factors of planes. The adjacent blocks are grouped if the plane similarity is high so that the plane areas are detected. The actual height and width of the plane area are calculated by using depth information and compared with the vehicle plate in order to detect the vehicle plate.

본 논문에서는 조명의 영향을 받지 않는 깊이 정보를 이용한 번호판 검출 방법을 제안한다. 깊이 정보를 통해 블록 내 화소들의 3차원 카메라 좌표를 구하고, 이를 통해 블록 내 평면의 인자를 계산한다. 그 후 인접한 블록간의 평면의 법선 벡터들을 비교하여 유사도를 측정한다. 평면 유사도가 높을 경우 두 블록이 한 평면에 속해 있다고 간주하여 그룹화함으로써 평면 영역을 검출한다. 검출된 평면 영역에 대해 깊이 정보를 이용하여 영역의 높이와 너비를 실제 번호판과 비교하여 번호판을 검출한다.

Keywords

SOJBB3_2019_v24n2_47_f0001.png 이미지

Fig. 1 Flowchart of proposed method

SOJBB3_2019_v24n2_47_f0002.png 이미지

Fig. 2 Projection into picture in pinhole camera model

SOJBB3_2019_v24n2_47_f0003.png 이미지

Fig. 3 Plane in camera coordinate system: (a) planedetermined by three points and (b) closestplane to the given points

SOJBB3_2019_v24n2_47_f0004.png 이미지

Fig. 4 Measuring similarity of two planes

SOJBB3_2019_v24n2_47_f0005.png 이미지

Fig. 5 Calculating width and height of plane area

SOJBB3_2019_v24n2_47_f0006.png 이미지

Fig. 6 Vehicles pictures for simulation

SOJBB3_2019_v24n2_47_f0007.png 이미지

Fig. 7 Plane surface detection by using proposed method

SOJBB3_2019_v24n2_47_f0008.png 이미지

Fig. 8 Vehicle plate detection by using proposed method

SOJBB3_2019_v24n2_47_f0009.png 이미지

Fig. 9 Vehicle plate detection by using conventional method for color picture[4]

Table 1 Specification of Korean vehicle plate

SOJBB3_2019_v24n2_47_t0001.png 이미지

Table 2 Simulation results of vehicle plate detection

SOJBB3_2019_v24n2_47_t0002.png 이미지

References

  1. R Zunino and S Rovetta, “Vector Quantization for License-Plate Location and Image Coding,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 1, pp. 159-167, 2000. https://doi.org/10.1109/41.824138
  2. S. Chang, L. Chen, Y. Chung, and S. Chen, “Automatic License Plate Recognition,” IEEE Transactions on Intelligent Transportation Systems, Vol. 5, No. 1, pp. 42-53, 2004. https://doi.org/10.1109/TITS.2004.825086
  3. H. Zhang, W. Zia, X. He, and Q. Wu, "Learning Based License Plate Detection Using Global and Local Features," Proceeding of 18th International Conference on Pattern Recognition, pp. 1102-1105, 2006.
  4. S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic License Plate Recognition (ALPR): A State-of-the-art Review,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 23, No. 2, pp. 311-325, 2013. https://doi.org/10.1109/TCSVT.2012.2203741
  5. Y. Zhang, T. Lu, J. Yang, and H. Kong, "Split and Merge for Accurate Plane Segmentation in RGB-D Images," Proceeding of 4th IAPR Asian Conference on Pattern Recognition, pp. 49-54, 2017.
  6. W. H. Lee, K. G. Kim, and S. H. Chung, “Volume Measurement of Limb Edema Using Three Dimensional Registration Method of Depth Images Based on Plane Detection,” Journal of Korea Multimedia Society, Vol. 17, No. 7, pp. 818-828, 2014. https://doi.org/10.9717/kmms.2014.17.7.818
  7. D. Holz1, S. Holzer, R. B. Rusu, and S. Behnke1, "Real-Time Plane Segmentation Using RGB-D Cameras," Proceeding of Robot Soccer World Cup, pp. 306-317, 2011.
  8. J. Sturm, N. Engelhard, F. Endres, W, Burgard, and D. Cremers, "A Benchmark for The Evaluation of RGB-D SLAM Systems," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573-580, 2012.
  9. F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart, "Tracking A Depth Camera: Parameter Exploration for Fast ICP," Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3824-3829, 2011.
  10. D. S. Lee and S. K. Kwon, “Intra Prediction of Depth Picture with Plane Modeling,” Symmetry, Vol. 10, No. 12, pp. 1-16, 2018.
  11. S. K. Kwon and D. S. Lee, “Method for Determining Variable-Block Size of Depth Picture for Plane Coding,” Journal of the Korea Industrial Information Systems Research, Vol. 22, No. 3, pp. 39-47, 2017. https://doi.org/10.9723/JKSIIS.2017.22.3.039
  12. R. Penrose, “On Best Approximate Solutions of Linear Matrix Equations,” Proceeding of the Cambridge Philosophical Society, Vol. 52, No. 1, pp. 17-19, 1956. https://doi.org/10.1017/S0305004100030929