• Title/Summary/Keyword: Vehicle Collision

Search Result 587, Processing Time 0.021 seconds

Structural Design and Analysis for the Reinforced Frame of Vehicle (자동차 보강 프레임에 대한 구조 설계 및 해석)

  • Kang, Sung-Soo;Cho, Seong-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.504-510
    • /
    • 2010
  • To achieve the structural safety of the vehicle, designs in various cases are carried out by using CATIA program. It is promoted the relaxation of stresses by collisions from the front portion, the side part and the rear portion of the vehicle. In this study, we conduct a variety of design of frames for the light weight frame of the vehicle and structural analysis, to protect the driver by adding reinforced frame. In the case of such a collision, there are maximum stresses greater than yield strength of steel and a very large local plastic deformation at the collision part.

A Study on Low-Overhead Collision Warning Scheme using Vehicle-to-Vehicle Communications (차량 간 통신을 이용한 저비용 사고 위험 방지 기술에 관한 연구)

  • Lee, Ji-Hoon;Kim, Dae-Youb
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1221-1227
    • /
    • 2012
  • It is expected that the vehicle safety systems using vehicle-to-vehicle communication can reduce the possibility of vehicle collision and prevent the chain crash by promptly delivering the status of neighboring vehicles. Many IEEE 802.11 DCF based Flooding schemes have been proposed, but they may generally expose the problems that the transmission efficiency is sharply declined as the vehicle density has increased and then is related to the low possibility of the channel access. Therefore, this paper proposes a collision prevention scheme using adaptively controlling the frequency of the message exchanges based on the current status of neighboring vehicles. Moreover, it is shown from simulation that the proposed scheme provides the performance gains over the existing Flooding based scheme.

Evaluation System for Forward Vehicle Collision Warning System (전방차량충돌경고장치(FVCWS) 평가 시스템)

  • Yong, Boo-Joong;Park, Yo-Han;Yoon, Kyong-Han;Hwang, Duk-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.85-90
    • /
    • 2007
  • The main function of the Forward Vehicle Collision Warning System (FVCWS) is to warn a driver when he or she experiences dangerous situations caused by a forward vehicle. Warning distance algorithms under same dangerous circumstances are often various depending on automobile manufacturers and component suppliers. Human factors also should be considered to warn the driver at an adequate warning distance. Therefore, it is necessary to develop a system for evaluating the pertinent warning timing in an identically dangerous situation. The system consists of sensors for measuring speed and acceleration of subject vehicle and target vehicle, controllers to follow the velocity profile properly, and wireless telecommunication equipments for receiving or transmitting the measured data in a real-time. According to actual field tests, it is shown that the developed system is suitable to evaluate warning distance of FVCWS.

Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door (차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구)

  • Kim, Jae Yeol;Choi, Soon Ho
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).

Three-dimensional Crush Measurement Methodologies Using Two-dimensional Data (2차원 데이터를 활용한 3차원 충돌 변형 측정 방법)

  • Han, Inhwan;Kang, Heejin;Park, Jong-Chan;Ha, Yongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.254-262
    • /
    • 2015
  • This paper presents 3D collision deformation modelling methodologies using photogrammetry for reconstruction of vehicle accidents. A vehicle's deformation shape in collision provides important information on how the vehicle collided. So effective measurement(scanning) and construction of a corresponding appropriate model are essential in the analysis of collision deformation shape for obtaining much information related to collision accident. Two measurement methods were used in this study: Indirect-photogrammetry which requires relatively small amount of photos or videos, and direct-photogrammetry which requires large amount of photos directly taken for the purpose of 3D modelling. When the indirect-photogrammetry method, which was mainly used in this study, lacked enough photographic information, already secured 2D numerical deformation data was used as a compensation. This made 3D collision deformation modelling for accident reconstruction analysis possible.

Analysis about Speed Variations Factors and Reliability of Traffic Accident Collision Interpretation (교통사고 충돌해석의 속도변화 인자 및 신뢰성에 관한 연구)

  • Lim, Chang-Sik;Choi, Yang-Won;Jeong, Ho-Kyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.539-546
    • /
    • 2011
  • Traffic accident collision interpretation is composed of various shapes, and speed variations working to the vehicle during collision are utilized as a very important factor in evaluating collision degrees between vehicles and safety of passengers who got in the vehicle. So, methods of interpreting results on speed variations utilizing simulation programs on the collision interpretation become necessary. By the way, reliability evaluation on each program is being required because various collision interpretations simulations are spread widely. This study utilized collision interpretation programs such as EDSMAC and PC-CRASH adopting completely different physical approaches, and then carried out collision experiments of one-dimensional front and two-dimensional right angle while changing values of a lot of collision factors such as vehicle's weight, center of gravity, rolling resistance, stiffness coefficient, and braking forces among early input conditions. Also, the study recognized effects of collision factors to speed variations as output results during crashing. As a result of this research, two simulation programs showed same speed variations together on the vehicle's weight, center of gravity, and braking forces. Stiffness coefficient of the vehicle reacted to EDSMAC only, and rolling resistance coefficient did not affect any particular influences on speed variations. However, there appeared a bit comparative differences from the speed variation's values, and this is interpreted as responding outcomes by applying fixed properties values to each simulation program plainly. Therefore, reliability on analysis of traffic accident collisions shall be improved by doing speed analysis after taking the fixed value of simulation programs into consideration.

The Collision Prevention System between Vehicles based on Fuzzy on a urban environment (도심환경에서 퍼지 기반 차량간 충돌 예방 시스템)

  • Jeong, Yi-Na;Lee, Byung-Kwan;Ahn, Heui-Hak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.5
    • /
    • pp.69-79
    • /
    • 2014
  • This paper proposes the Collision Prevention System based on Fuzzy which reasons a risk with the location information of vehicles and pedestrians and prevents collision between vehicles, and between a vehicle and a pedestrian with the reasoned risk. The proposed system provides three functions. First, it identifies a pedestrian's location with his smart phone and a vehicle's location with the GPS equipped in the vehicle. and transfers the identified information to their neighbors. Second, it makes a vehicle and a pedestrian reason a risk by considering a moving direction, a moving speed and road information. Third, it provides a vehicle and a pedestrian with the reasoned information such as route detour, speed reduction, etc. Therefore, the proposed collision prevention system based on Fuzzy not only prevents collision accidents beforehand by reasoning a risk, but also reduces a variety of losses by protecting traffic accident and congestion.

Collision Avoidance using Model Predictive Control (모델 예측 제어를 활용한 충돌 회피)

  • Choi, Jaewoong;Seo, Jongsang;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2013
  • This paper presents collision avoidance using model predictive control algorithm. A model predictive control algorithm determines lateral tire force and yaw moment and steering angle input and differential braking input is determined from lateral tire force and yaw moment. A constraint for model predictive control is designed for obstacle avoidance. A objective function is designed to minimize lateral tire force and yaw moment input and to follow changed lane after collision avoidance. The performance of proposed algorithm has been investigated via computer simulation conducted to vehicle dynamic software CARSIM and Matlab/Simulink.

A Study on the Rollover Behavior of SUV and Collision Velocity Prediction using PC-Crash Program (PC-Crash를 이용한 SUV의 전복사고 거동 및 충돌속도 예측에 관한 연구)

  • Choi, Yong-Soon;Baek, Se-Ryong;Jung, Jong-Kil;Cho, Jeong-Kwon;Yoon, Jun-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Along with the recent increase in traffic volume of vehicles, accidents involving rollover of vehicles have been rapidly increased, resulting in an increase casualties. And to prevent this, various technologies such as vehicle crash test equipment and analysis program development have been advanced. In this study, the applied vehicle model is FORD EXPLORER model, and PC-Crash program for vehicle collision analysis is used to predict the rollover accident behavior of SUV and the collision velocity. Compared with the actual rollover behavior of SUV through the FMVSS No 208 regulations, the analysis results showed similar results, the characteristics of the collision velocity and roll angle showed a tendency that the error rate slightly increased after 1000 msec. Then, as a result of considering using the database of NHTSA, it is shown that the rollover accident occur most frequently in the range of the collision velocity of 15~77 km/h and the collision angle of $22{\sim}74^{\circ}$. And it is possible to estimate the vehicle speed and collision time when the vehicle roof is broken by reconstructing the vehicle starting position, the roof failure position and the stop position by applying the actual accident case.

Vehicle Collision Avoidance Sensor with Interference Immunity to Own Transmitted Signal (자차 송신기 신호 간섭회피 기능을 갖는 차량의 충돌방지 센서)

  • Choi, Kyoo-Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.433-438
    • /
    • 2013
  • Interference reduction method of vehicle collision avoidance sensor which is used for the low speed electric vehicle has been investigated. Various methods were attempted for the vehicle collision avoidance distance sensor, which received a transmitted signal from a front driving vehicle to measure the distance between two vehicles, to avoid interference by the own transmitter signal toward the rear following vehicle. In this study, -12dB of interference cancellation ratio was realized by using the phase cancellation method to the transmitted signal from the own vehicle. Proposed phase cancellation method is regarded to have the advantage of continuous monitoring in comparison to the conventional time sharing transmitting and receiving method.