• Title/Summary/Keyword: Vehicle's ECU

Search Result 68, Processing Time 0.034 seconds

Evaluating System for Fuel Injector with the Condition of a Driving Vehicle Mode Using an ECU HILS (ECU HILS를 이용한 실차 주행 조건에서의 인젝터 평가시스템)

  • Lee, Choong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.812-828
    • /
    • 2010
  • A fuel injection system using an ECU HILS as an alternate to a vehicle test for the fuel injectors was developed. The throttle position, vehicle speed, engine speed, crank position, cam position, intake air flow, and several other sensor signals that are supplied to the ECU were measured and recorded as a data file for a vehicle driven in the FTP-75 mode in a chassis dynamometer. Electric signals that are equivalent to the sensor signals from the vehicle are reconstructed from the recorded data file using data acquisition boards, microprocessors, and computers. All sensor signals are supplied to the ECU with synchronized timing using a computer program. The findings show that the cost and time of vehicle experiments can be reduced using the ECU HILS system. Moreover, the repeatability of the generation of sensor signals can enhance the accuracy of a range of experiment related to vehicle testing. An ECU scanner that scans the sensor signals that are input to the ECU through a serial port was used to assess the accuracy of the reconstructed signals. The scanning results show good agreement with the reconstructed input signals. Injectors were connected to the ECU HILS system and were driven by the system to measure the quantity of injected fuel.

Remote Measuring System for Automobile′s ECU Self Diagnostic Signal (자동차 ECU 자기진단 신호의 원격계측 시스템)

  • Jeong, Jin-Ho;Yun, Yeo-Heung;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.159-167
    • /
    • 2002
  • In this paper. we present a new method for monitoring of ECU's self diagnostic signals of vehicle without wire. In order to measure the ECU's self diagnostic signals, the interfaced circuit is designed to communicate ECU and designed terminal according to the IOS, SAE regulation of communication protocol standard. Micro-processor 80C196KC is used for communicating ECU's self diagnositc signals and the results are sent to the wireless terminal and PC monitoring system. Wireless terminal is also developed by 80C196KC, LCD, RF module, and keypad. The command from the keypad is sent to ECU through RF module and the result show on the Graphic LCD in real time. Software on PC is developed to monitor the ECU's self diagnostic signals using the Visual C++ complier in which RS232 port is programmed by half duplex method. The algorithms for measuring the ECU's self diagnostic signals are verified to monitor both ECU and portable terminal state. At the same time, the information to fix the vehicle's problem can be shown on the developed software. The possibility for remote measurement of ECU self diagnostic signal is verified through the developed systems and algorithms.

Self-Diagnostic Signal Monitoring System of KWP2000 Vehicle ECU using Bluetooth

  • Choi, Kwang-Hun;Lee, Hyun-Ho;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.132-137
    • /
    • 2004
  • On-Board Diagnostic(OBD) systems are in most cars and light trucks on the load today. During the 1970's and early 1980's manufacturers started using electronic means to control engine functions and diagnose engine problems. The CARB's diagnostic requirements to meet EPA emission standards have been designated as OBD with a goal of monitoring all of the emissions-related components, as well as the chassis, body, accessory devices and the diagnostic control network of the vehicle for proper operation. In this paper, we present a remote measurement system for the wireless monitoring of diagnosis signal and sensors output signals of ECU adopted KWP2000, united the OBD communication protocol, on OBD-compliant vehicle using the wirless communication technique of Bluetooth. In order to measure the ECU signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A microprocessor S3C3410X is used for communicating ECU signals. The embedded system's software is programmed to measure the ECU signals using the ARM compiler and ANCI C based on MicroC/OS kernel to communicate between bluetooth modules using bluetooth stack. The diagnostic system is developed using Visual C++ MFC and protocol stack of bluetooth for Windows environment. The self-diagnosis and sensor output signals of ECU is able to monitor using PC with bluetooth board connected in serial port of PC. The algorithms for measuring the ECU sensor output and self-diagnostic signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of self-diagnosis and sensor signals of ECU adopted KWP2000 in embedded system verified through the developed systems and algorithms.

  • PDF

Remote Measurement for Automobile′s ECU Diagnostic Signals based on the PDA (PDA 기반의 차량 진단신호의 원격 계측)

  • 윤여흥;서지원;이현호;권대규;이영춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.279-282
    • /
    • 2002
  • In this paper, we present a new method for monitoring of ECU's self diagnostic signals of vehicle without wire. In order to measure the ECU's self diagnostic signals, the interfaced circuit is designed to communicate ECU and a designed display terminal according to the ISO, SAE regulation of communication protocol standard. A 80C196KC processor is used for communicating ECU's self diagnostic signals and the results are sent to PDA monitoring system. Software on PDA is developed to monitor the ECU's self diagnostic signals using the Embedded Visual C++ compiler in which RS232 port is programmed by half duplex method. The algorithms for measuring the ECU's self diagnostic signals are verified to monitor ECU's state. At the same time, the information to fix the vehicle's problem can be shown on the developed PDA software. The possibility for remote measurement of ECU self diagnostic signal using PDA is also verified through the developed systems and algorithms.

  • PDF

A implement of vehicle Blackbox system with OBD and MOST network (OBD와 MOST 네트워크를 이용한 차량용 블랙박스 시스템 설계)

  • Baek, Sung-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.66-69
    • /
    • 2010
  • Lately, vehicle combined vehicle and IT(Information Technology) for vehicle's safety and convenience. so, vehicles is equipped with many ECU(Electronic control unit). the ECU's transmit data about each electronic control unit with OBD(On-Board Diagnostics) Network and data about each multimedia with MOST(Media Oriented System Transport) Network. In this paper, Supplementing disadvantage of existing blackbox, Using MOST of in-vehicle multimedia network and OBD-II of in-vehicle control network, blackbox system obtain the vehicle's driving state data. so, blackbox system judge vehicle's driving state and provide vehicle's driving state information to driver. Blackbox system implement the features mentioned above. as a result, blackbox is going to be more accurate blackbox system.

  • PDF

A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells (차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정)

  • Cho, Seung Keun;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

Design and Application of Accelerated Run-in Test for ECU Quality Improvement (ECU 품질 개선을 위한 Accelerated Run-in Test 설계 및 효과고찰)

  • Cho, Hyogeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.145-151
    • /
    • 2014
  • Modern vehicle has a lot of ECU(Electronic Control Unit) products to control many parts such as engine, transmission, brake, body and so on. ECU quality is one of important factors related to vehicle quality and driver's safety. Based on Bath-tub curve which presents failure rate during product lifetime, we designed and applied Accelerated Run-in Test into manufacturing line by simulating stress amount to ECU and developing the required software and efficient test equipment for mass production. This test makes ECU products stressed through electrical and thermal stresses under excessive driving condition, which induce potential initial failure of components in the ECU during production. The outcome until these days proved that Acceleration Run-in Test have reduced initial failure rates and increased quality of ECU products in the field outstandingly.

Remote Measurement for Automobile′s ECU Sensor Signals Using RF modules (RF모듈을 이용한 자동차 ECU 센서신호의 원격계측)

  • 이성철;서지원;권대규;방두열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1067-1070
    • /
    • 2003
  • In this paper, we present a remote measurement system for the wireless monitoring of ECU Sensor Signals of vehicle. In order to measure the ECU sensor signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A micro-controller 80C196KC is used for communicating ECU sensor signals. ECU sensor signals are transmitted to the RF-wireless terminal that was developed using the micro controller 80386EX. LCD, and RF-module. 80386EX software is programmed to monitor the ECU sensor signals using the Borland C++ compiler in which the half duplex method was used for the RS232 communication. The algorithms for measuring the ECU sensor signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of ECU sensor signals using 80386EX is also verified through the developed systems and algorithms.

  • PDF

Studies of the possibility of external threats of the automotive ECU through simulation test environment (자동차용 ECU의 CAN 메시지를 통한 자동차 공격 방법 연구)

  • Lee, Hye-Ryun;Kim, Kyoung-Jin;Jung, Gi-Hyun;Choi, Kyung-Hee;Park, Seung-Kyu;Kwon, Do-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.39-49
    • /
    • 2013
  • In this paper, security mechanism of internal network(CAN) of vehicle is a very incomplete state and the possibility of external threats as a way to build a test environment that you can easily buy from the market by the vehicle's ECU(Electric Control Unit) to verify and obtain a CAN message. Then, by applying it to ECU of the real car to try to attack is proposed. A recent study, Anyone can see plain-text status of the CAN message in the vehicle. so that in order to verify the information is vulnerable to attack from outside, analyze the data in a vehicle has had a successful attack, but attack to reverse engineering in the stationary state and buying a car should attempt has disadvantages that spatial, financial, and time costs occurs. Found through the car's ECU CAN message is applied to a real car for Potential threats outside of the car to perform an experiment to verify and equipped with a wireless network environment, the experimental results, proposed method through in the car to make sure the attack is possible. As a result, reduce the costs incurred in previous studies and in the information absence state of the car, potential of vehicle's ECU attack looks.

Development of the Battery ECU for Hybrid Electric Vehicle (하이브리드 전기자동차용 배터리 ECU 개발)

  • Nam J.H.;Choi J.H.;Kim S.J.;Kim J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.740-744
    • /
    • 2003
  • The development of electric vehicle has been accelerated by the recent 'California Initiative' which has required increasing proportions of new vehicle in Los Angeles area to be ZEV(Zero Emission Vehicles) But, because skill of battery is feeble, ZEV regulation was postponed but that is by CO2 restriction and environmental pollution problem the latest because do development require. In the electric vehicle and hybrid electric vehicle, the battery ECU(Battery Management System, BMS) is very important and an essential equipment. The accurate state of charge(SOC) is required for the battery for hybrid electric vehicles. This paper proposes SOC algorithm for the HEV based on the terminal voltage. Also, designed and analyzed battery ECU to apply on HEV.

  • PDF