• 제목/요약/키워드: Vegetative growth

검색결과 590건 처리시간 0.034초

Vegetative Growth of Four Strains of Hericium erinaceus Collected from Different Habitats

  • Imtiaj, Ahmed;Jayasinghe, Chandana;Lee, Geon-Woo;Shim, Mi-Ja;Rho, Hyun-Su;Lee, Hyun-Sook;Hur, Hyun;Lee, Min-Woong;Lee, U-Youn;Lee, Tae-Soo
    • Mycobiology
    • /
    • 제36권2호
    • /
    • pp.88-92
    • /
    • 2008
  • Vegetative growth of four different strains of Hericium erinaceus was observed. The temperature suitable for optimal mycelial growth was determined to be $25^{\circ}C$, with growth observed in the extend temperature range of $20{\sim}30^{\circ}C$. The different strains of this mushroom showed distinct pH requirements for their optimum vegetative growth, with the most favorable growth observed at pH 6. Considering vegetative mycelial growth, PDA, YM, Hennerberg, Hamada, and Glucose peptone were the most favorable media, and Czapek Dox, Hoppkins, Glucose tryptone, and Lilly were the most unfavorable media for these mushroom strains. With the exception of lactose, most of the carbon sources assayed demonstrated favorable vegetative growth of H. erinaceus. For mycelial growth, the most suitable nitrogen source was alanine and the most unsuitable was histidine. Oak sawdust medium supplemented with $10{\sim}20%$ rice bran was the best for mycelial growth of the mushroom.

Temperature effects on the growth and morphology of Anabaena sp.: lab-scale investigation and onsite validation

  • Oh Kyung Choi;Dong Hyuk Shin;Dandan Dong;Sung Kyu Maeng;Jungsu Park;Jae Woo Lee
    • Membrane and Water Treatment
    • /
    • 제15권1호
    • /
    • pp.11-19
    • /
    • 2024
  • This study presents the characteristics of growth and morphology of Anabaena sp., a representative filamentous cyanobacterium, depending on temperature variation from 10 to 30 ℃. Both the filament density (or number) and its length of Anabaena were highly affected by temperature, as well as growth stage. Rapid growth at a higher temperature led to an increase in Anabaena filament density, as well as optical density at 680 nm (OD680). However, the number of vegetative cells within a single filament of Anabaena grown at 30 ℃ was smaller than those grown at lower temperatures, due to the intercalary division of the filament. Of the three different cells comprising a single Anabaena filament, the vegetative cell marginally affects the growth of Anabaena. The main dimensions of the vegetative cell, i.e., length and width, depend on the temperature and growth stage. The length-to-width (L/W) ratios of vegetative cells and akinetes were relatively consistent regardless of the temperature. However, in vegetative cells with dichotomous growth, the L/W ratio shows clear differences depending on their growth stage. It has been demonstrated that the L/W ratio could be used as an indicator to indirectly predict the growth stage of on-sit Anabaena samples.

The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

  • Son, Moonil;Lee, Yoonseung;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제32권4호
    • /
    • pp.281-289
    • /
    • 2016
  • The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1) strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence) of its fungal host. To characterize function(s) of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI) FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s) in FgV1 induced phenotype alteration such as delayed vegetative growth.

M.7 및 M.9에 접목된 '산사' 사과나무의 대목 노출 길이가 영양생장 및 생산량에 미치는 영향 (Influence of the Exposed Length of Rootstock on Vegetative Growth and Productivity of 'Sansa' Apple Trees Grafted on M.7 or M.9)

  • 권영순;김정희;사공동훈;박종택
    • 한국환경농학회지
    • /
    • 제42권4호
    • /
    • pp.297-310
    • /
    • 2023
  • M.7 rootstock is moderately resistant to fire blight. However, M.7 is generally too vigorous for high-density apple systems, but it can be grafted onto cultivars that exhibit weak tree growth, such as 'Sansa'. This study investigated the vegetative growth, yield, and fruit quality of 'Sansa' apple trees grafted on M.7 or M.9 rootstocks to assess the feasibility of establishing domestic high-density apple systems using M.7 and to determine the optimum exposure length for rootstocks. Trees were planted with exposed rootstock lengths of 5, 10, and 15 cm. The vegetative growth of apple trees grafted onto M.7 was greater than that of M.9 and vegetative growth tended to decrease as the exposed length of rootstock increased. However, the differences in yield per tree, average weights, soluble solids contents, and titratable acidity due to the rootstock and its exposure length varied. The accumulated yield over a 10 year period and the yield efficiency of M.7 were lower than that of M.9 and the yield efficiency tended to decrease as the exposed length of rootstock increased. When apple trees were grafted onto M.9, biennial bearing and tree vigor weakening occurred if the exposed length of the rootstock was over 10 cm. Conversely, when apple trees were grafted onto M.7, vegetative growth was excessive if the exposed length of rootstock was below 10 cm. Based on the results from this study, the optimum M.7 and M.9 exposure lengths for 'Sansa' were 15 cm and 5 cm, respectively.

천마 기내배양을 통한 영양번식경 유도와 생장 (Induction and Growth of Vegetative Stems through In Vitro Culture of Gastrodia elata)

  • 김현태;김승택;이위영;박응준
    • 한국약용작물학회지
    • /
    • 제21권2호
    • /
    • pp.142-147
    • /
    • 2013
  • Gastrodia elata has been cultivated as an important medicinal resources to treat various human diseases. One of the major problems associated with its field production is the degeneration of seed tubers, which is mainly caused by soil-borne pathogens. This study was conducted to produce disease-free seed tubers by the development of in vitro micropropagation method. First, tubers of G. elata were treated with $HgCl_2$ prior to culturing in vitro. Among various culture medium tested, water agar (WA) and WPM medium were the most effective on the induction and growth of vegetative stems. NAA ($0.1mg/{\ell}$) or TDZ ($1.0mg/{\ell}$) in WA medium showed better growth of vegetative stems compared to other plant hormones. Finally the induction and growth of vegetative stems were better in the dark compared to the light condition. In this study, we established an in vitro micropropagation system of G. elata, which might be an efficient way to increase the yield and quality of G. elata tubers in the field production.

참깨 생육기별 한발기간이 주요형질에 미치는 영향 (Influence of Drought Period in Different Growth Stage on Agronomic Characters in Sesame)

  • 최형국;김용재;구자옥;최원열;김학진
    • 한국작물학회지
    • /
    • 제35권4호
    • /
    • pp.295-303
    • /
    • 1990
  • 우리나라 참깨 생산성의 저조원인의 하나는 파종기와 생육중의 한발을 들 수 있다. 그러므로 본 연구는 참깨 재배시 한발조건에 따른 생리적 반응이나 주요 형질들이 민감하게 반응하는 시기를 구명한 결과는 다음과 같다. 1. 한발에 의한 참깨의 고사주는 영양생장기는 한발처리 40일 이후부터 생식생장기는 20일 이후부터 나타났다. 2. 영양생장기보다 생식생장의 한발이 피해가 더 컸다. 3. 모든 유용형질들은 영양생장기는 40일 한발까지, 생식생장기는 30일 한발까지 회복이 가능하였으나 그 이후는 거의 불가능하였다. 4. 한발로 인한 참깨의 수량은 한발일수가 연장됨에 따라 감수폭이 컸으며 영양생장기에는 29-80%, 생식생장기에는 49-85%의 감수폭을 보였다. 5. 한발조건에서 등숙율을 제외한 모든 유용형질들은 수량과 고도의 정의 상관관계를 나타내었다. 6. 한발로 인한 유분함량은 한발일수가 경과함에 따라 52%에서 42%까지 감수하였으며, 영양생장기 보다 생식생장기에서 더욱 감소하는 경향을 보였지만 지방산조성과는 무관하였다. 7. 이상의 결과 참깨는 한발로 인해 stress를 받으면 생육전반에 걸쳐 계속적인 영향을 받아 유용형질들의 완전회복이 불가능하여 수량감소를 가져온다는 사실이 인정되었다.

  • PDF

Effects of light and nutrient on flower formation and vegetative growth of Viola collina

  • Park, Hyekyung;Son, Ga-yeon;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • 제46권3호
    • /
    • pp.243-249
    • /
    • 2022
  • Background: Mixed breeding herb Viola collina Besser, which produces both chasmogamous and cleistogamous flower, has limited habitats under closed canopy and short and early flowering timing, making it relatively more vulnerable to climate change. To better understand the effect of light and nutrient on the flower formation and vegetative growth of V. collina, a mesocosm experiment was conducted. Two-by-two factorial treatments of two light conditions (100% and 60% of natural light) and two fertilizer treatment conditions (fertilized and not fertilized) were applied in the mesocosm experiment. Results: The number of flowers, including chamogamous and cleistogamous flowers, was highest (5.65/pot) under 60% light and fertilized condition and lowest (1.41/pot) under 100% light and not-fertilized condition. However, above ground vegetative growth was highest (2.89 g/pot) under 100% light and fertilized condition and lowest (2.38 g/pot) under 60% light and not-fertilized condition. Above ground biomass to belowground biomass ratio was highest (1.50) under 60% light and fertilized condition and lowest (1.26) under 100% light and fertilized condition. Conclusions: This study showed that high light and nutrient are responsible for the vegetative growth, though the effect of fertilizer was reduced due to allocation and retainment of nutrients. In addition, the low light is necessary to make flowers, especially chasmogamous flowers.

Vegetative Growth Characteristics of Phalaenopsis and Doritaenopsis Plants under Different Artificial Lighting Sources

  • Lee, Hyo Beom;An, Seong Kwang;Lee, Seung Youn;Kim, Ki Sun
    • 원예과학기술지
    • /
    • 제35권1호
    • /
    • pp.21-29
    • /
    • 2017
  • This study was conducted to determine the effects of artificial lighting sources on vegetative growth of Phalaenopsis and Doritaenopsis (an intergeneric hybrid of Doritis and Phalaenopsis) orchids. One - month - old plants were cultivated under fluorescent lamps, cool - white light - emitting diodes (LEDs), or warm - white LEDs at 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The blue (400 - 500 nm) : green (500 - 600 nm) : red (600 - 700 nm) : far - red (700 - 800 nm) ratios of the fluorescent lamps, cool-white LEDs, and warm-white LEDs were 1 : 1.3 : 0.8 : 0.1, 1 : 1.3 : 0.6 : 0.1, and 1 : 2.7 : 2.3 : 0.4, respectively. Each light treatment was maintained for 16 weeks in a closed plant-production system maintained at $28^{\circ}C$ with a 12 h photoperiod. The longest leaf span, as well as the leaf length and width of the uppermost mature leaf, were observed in plants treated with warm-white LEDs. Plants grown under fluorescent lamps had longer and wider leaves with a greater leaf span than plants grown under cool-white LEDs, while the maximum quantum efficiency of photosystem II was higher under cool-white LEDs. The vegetative responses affected by different lighting sources were similar at both 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Leaf span and root biomass were increased by the higher light intensity in both cultivars, while the relative chlorophyll content was decreased. These results indicate that relatively high intensity light can promote vegetative growth of young Phalaenopsis plants, and that warm - white LEDs, which contain a high red-light ratio, are a better lighting source for the growth of these plants than the cool-white LEDs or fluorescent lamps. These results could therefore be useful in the selection of artificial lighting to maximize vegetative growth of Phalaenopsis plants in a closed plant - production system.

Responses of Soybean Cultivars to Excessive Soil Moisture Imposed at Different Growth Stages

  • Seong, Rak-Chun;Sohn, Joo-Yong;Shim, Sang-In
    • 한국작물학회지
    • /
    • 제45권5호
    • /
    • pp.282-287
    • /
    • 2000
  • Soybean [Glycine max (L.) Merrill] crops, grown in a rice soybean rotation, can suffer when grown in soil with excessive moisture. The objective of this work were to determine the reduction in growth and yield, responses of vegetative and reproductive growth of soybean to excessive soil moisture achieved by prolonged irrigation. Responses of different cultivars were determined at growth stages from V6 to R8 to clarify the sensitive growth stages or characteristics to excessive soil moisture. Cultivar differences in response to excessive soil moisture condition were conspicuous in seed dry weight and harvest index (HI) but not in the response of seed number or pod number per plant. The timing of irrigation causing the condition of excessive soil moisture influenced the vegetative or reproductive traits. Soybean plants were more affected by irrigation commencing at the pre-flowering than at the post-flowering stage. Post-flowering irrigation did not reduce growth of vegetative organs significantly; in fact the growth of stems and leaves was facilitated by the prolonged irrigation commencing at flowering. Differences between cultivar response to prolonged irrigation were assumed to relate to the reduced amount of assimilates translocated to the reproductive organ.

  • PDF

Thiamin Requirements for Vegetative Growth and Fruit Body Formation of Lentinula edodes

  • Shin, Gab-Gyun;Meguro, Sadatoshi;Kawachi, Shinsaku
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권1호
    • /
    • pp.48-54
    • /
    • 2000
  • 표고버섯의 균사성장과 자실체 형성에 있어서 티아민의 효과를 펩톤 글루코스 기본 액체배지를 이용하여 조사하였다. 티아민은 표고버섯의 자실체 형성을 위해서는 필수 인자이며 최소 요구량은 10 ${\mu}g$/L 정도이다. 영양 생장기에는 티아민 농도 1.5 ${\mu}g$~1.5 mg/L의 범위 내에서는 영향을 거의 받지 않았다. 티아민을 첨가하지 않은 펩톤 글루코스 한천배지에 3회 계대 배양을 실시해도 티아민에 의한 균사성장의 차이는 나타나지 않았다. 이상의 결과, 티아민은 표고버섯의 균사성장에는 극히 소량이 요구되지만 거의 대부분의 티아민은 자실체 형성에 사용된다는 것을 알았다.

  • PDF