• Title/Summary/Keyword: Vegetation effects

Search Result 473, Processing Time 0.026 seconds

Variability of Hydrologic Partitioning revisiting Horton Index (Horton 지수의 재논의를 통한 수문분할의 변동성)

  • Choi, Dae-Gyu;Choi, Min-Ha;Ahn, Jae-Hyeon;Park, Moo-Jong;Kim, Sang-Dan
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.35-44
    • /
    • 2011
  • In order to explore vegetation adaptation to climate variability and the impacts on water balance dynamics, the inter-regional and the inter-annual variability of both water availability and vegetation productivity are investigated. The Horton index, which is the ratio between actual evapotranspiration and catchment wetting as a measure of vegetation water use at catchment-scale, is revisited to quantify the effects of growing-season water availability on hydrologic partitioning at catchment scale. It is shown that the estimated Horton index is relatively constant irrespective of inter-annual climate variability. In addition, the Horton index is compared with catchment-scale vegetation rain use efficiency. The results show that there is an interesting pattern in the response of vegetation water use to water availability. When water becomes the limiting factor for vegetation productivity, the catchment-scale vegetation rain use efficiency converges to a common maximum value in agreement with earlier findings at the ecosystem level.

Experimental study on the sediment sorting processes of the bed surface by geomorphic changes in the vegetated channels (실내실험에 의한 혼합사 식생하도의 지형변화와 하상토 분급 특성 연구)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.73-81
    • /
    • 2016
  • This study investigates the development of lower channels and sediment sorting processes in the vegetated channels with the mixed sediment. The sediment discharges fluctuate with time and decrease with vegetation density. The bed changes with irregular patterns, and the sediment particles in the vegetated zone at the surface of bed are fine. The dimensionless geometric mean decreases with vegetation density. The fine sediment particles are trapped by vegetation, and the bed between main steam and vegetated zone increases. Moreover, the particle sizes are distributed irregularly near the zone. The hiding functions decrease with dimensionless particle size. However, the functions increase with vegetation density, which is confirmed by decreasing sediment discharge with vegetation. The lower channel is stable and the migration decreases in the condition of $0.5tems/cm^2$. However, the migration of the lower channel in the condition of $0.7stems/cm^2$ increases due to the increased sinuosity and new generated channels in the sedimentated vegetation zone.

Availability of Normalized Spectra of Landsat/TM Data by Their Band Sum

  • Ono, Akiko;Kajiwara, Koji;Honda, Yoshiaki;Ono, Atsuo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.573-575
    • /
    • 2003
  • In satellite spectra, Though the magnitude varies with intensity of sunstroke, dip angle of land so on, the shape is less deformed with these effects. from this point of view, we have developed a spectral shape-dependent analysis utilizing a normalization procedure by the spectral integral and applied it to Landsat/TM spectra. Inevitable topographic and atmospheric effects can be suppressed. The correction algorithm is very simple and timesaving and the suppression of topographic effects is especially effective. Normalized band 4 is almost linear to NDVI values, and is available to the vegetation index.

  • PDF

Numerical Experiments of Vegetation Growth Effects on Bed Change Patterns (식생생장 영향을 고려한 하도변화에 대한 수치모의)

  • Kim, Hyung Suk;Park, Moon Hyeong;Woo, Hyo Seop
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.68-81
    • /
    • 2014
  • In this study, the numerical simulation regarding the process and characteristics of topography change due to the vegetation recruitment and growth was carried out by adding the vegetation growth model to two-dimensional flow and sediment transport models. The vegetation introduction and recruitment on the condition for developing an alternate bar reduced the bar migration. The vegetated area and channel width changes were more significantly influenced by changes in upstream discharge rather than the duration of low flow. When the upstream discharge decreased, the vegetation area increased and the channel width decreased. The vegetation introduction and recruitment on the condition for developing a braided channel significantly influenced the characteristics of topography changes. In the braided channel, vegetation reduced the braided index, and when the upstream discharge decreased significantly, the channel topography was changed from the braided channel to the single channel. The vegetation area decreased as the upstream discharge increased. The channel width decreased significantly after the vegetation was introduced and it also decreased as the upstream discharge decreased. It was confirmed through the numerical simulation that a decrease in flood discharge accelerated the vegetation introduction and recruitment in the channel and this allowed to confirm its influence on the characteristics of topography changes qualitatively.

Unveiling the Potential: Exploring NIRv Peak as an Accurate Estimator of Crop Yield at the County Level (군·시도 수준에서의 작물 수확량 추정: 옥수수와 콩에 대한 근적외선 반사율 지수(NIRv) 최댓값의 잠재력 해석)

  • Daewon Kim;Ryoungseob Kwon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.182-196
    • /
    • 2023
  • Accurate and timely estimation of crop yields is crucial for various purposes, including global food security planning and agricultural policy development. Remote sensing techniques, particularly using vegetation indices (VIs), have show n promise in monitoring and predicting crop conditions. However, traditional VIs such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have limitations in capturing rapid changes in vegetation photosynthesis and may not accurately represent crop productivity. An alternative vegetation index, the near-infrared reflectance of vegetation (NIRv), has been proposed as a better predictor of crop yield due to its strong correlation with gross primary productivity (GPP) and its ability to untangle confounding effects in canopies. In this study, we investigated the potential of NIRv in estimating crop yield, specifically for corn and soybean crops in major crop-producing regions in 14 states of the United States. Our results demonstrated a significant correlation between the peak value of NIRv and crop yield/area for both corn and soybean. The correlation w as slightly stronger for soybean than for corn. Moreover, most of the target states exhibited a notable relationship between NIRv peak and yield, with consistent slopes across different states. Furthermore, we observed a distinct pattern in the yearly data, where most values were closely clustered together. However, the year 2012 stood out as an outlier in several states, suggesting unique crop conditions during that period. Based on the established relationships between NIRv peak and yield, we predicted crop yield data for 2022 and evaluated the accuracy of the predictions using the Root Mean Square Percentage Error (RMSPE). Our findings indicate the potential of NIRv peak in estimating crop yield at the county level, with varying accuracy across different counties.

The Effects of Existing Vegetation and Fertilization on the Improvement of Natural Grassland by Oversowing (지표추파법에 의한 목야지 개량시 선점식생과 시비의 영향)

  • 김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.1 no.1
    • /
    • pp.2-9
    • /
    • 1978
  • A review of factors influencing grass and clover establishment, survival and yield at oversowing was made from the experimental results of home and abroad. The following conclusions are considered: (1) The existing vegetation present at oversowing appeared to be the most critical factor reducing establishment and survival of grass. Therefore, it is essential to check competition from the native vegetation before oversowing. (2) Although lime had comparatively little effect on yield of grassland, the general effect of lime should be more emphasized under our acid soil conditions to promote the availability of all the essential elements and the growth of microorganisms, and to reduce the toxic effects of nutrients. One to two tons of lime per ha at oversowing would be useful. (3) Phosphorus is one of the nutrients most generally deficient in grassland soils of Korea, consequently, this nutrients applied at oversowing is very effective. Application as much as 200kg of phosphorus per ha would be essential. (4) The effect of nitrogen on the establishment and survival of grass depends on the amount and density of the herbage present. The use of nitrogen in dense herbage adversely affected grass establishment and survival, possible because the fertilizer stimulated the growth of the eisting herbage. Around 40kg of nitrogen per ha may be enough at oversowing (5) Potassium is not as universally deficient in soils of native grassland as phosphorus. Therefore, it cannot be over-emphasized at oversowing. Studies determinig the optimum amount of potassium at of oersowing are needed.

  • PDF

The Effects of Silvopastoral Practice on Changes of Understory Vegetation in a Japanese Larch (Larix kaempferi) Plantation

  • Kang, Sung Kee;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.151-159
    • /
    • 2007
  • This study was conducted to investigate the effects of thinning on changes in stand characteristics and understory vegetation in a silvopasture practiced Japanese larch plantation in the Research Forest of Kangwon National University, Korea. Three different thinning intensities (64%, 35%, and control) were applied. Before and after thinning, the understory plant species increased its number from 48 (7 tree species, 7 shrubs species, 28 herbaceous species, and 6 woody climbers) to 100 (11 tree species, 15 shrub species, 67 herbaceous species, and 7 woody climbers). Thinning made plants invade easily on the forest floor, and plot A (325 stems/ha) had much higher number of undersory species than those Of plot B (575 stems/ha) and control plot (1,150 stems/ha). In three years after thinning, understory aboveground biomass (kg/ha) of herbs were 523 for control, 1,230 for plot B, and 1,288 for plot A. The canopy coverage had remarkable influence on the understory biomass production, resulting in relatively small amount of herbage production on control plot. The differences were statistically significant between thinned plots and unthinned plot, but there were no significant differences among the thinned plots (p<0.05).