DOI QR코드

DOI QR Code

Unveiling the Potential: Exploring NIRv Peak as an Accurate Estimator of Crop Yield at the County Level

군·시도 수준에서의 작물 수확량 추정: 옥수수와 콩에 대한 근적외선 반사율 지수(NIRv) 최댓값의 잠재력 해석

  • Daewon Kim (Department of Landscape Architecture and Rural Systems Engineering, Seoul National University) ;
  • Ryoungseob Kwon (Interdisciplinary Program in Landscape Architecture, Seoul National University)
  • 김대원 (서울대학교 농업생명과학대학 조경지역시스템공학부 조경학전공) ;
  • 권령섭 (서울대학교 환경대학원 협동과정 조경학전공)
  • Received : 2023.06.26
  • Accepted : 2023.08.04
  • Published : 2023.09.30

Abstract

Accurate and timely estimation of crop yields is crucial for various purposes, including global food security planning and agricultural policy development. Remote sensing techniques, particularly using vegetation indices (VIs), have show n promise in monitoring and predicting crop conditions. However, traditional VIs such as the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) have limitations in capturing rapid changes in vegetation photosynthesis and may not accurately represent crop productivity. An alternative vegetation index, the near-infrared reflectance of vegetation (NIRv), has been proposed as a better predictor of crop yield due to its strong correlation with gross primary productivity (GPP) and its ability to untangle confounding effects in canopies. In this study, we investigated the potential of NIRv in estimating crop yield, specifically for corn and soybean crops in major crop-producing regions in 14 states of the United States. Our results demonstrated a significant correlation between the peak value of NIRv and crop yield/area for both corn and soybean. The correlation w as slightly stronger for soybean than for corn. Moreover, most of the target states exhibited a notable relationship between NIRv peak and yield, with consistent slopes across different states. Furthermore, we observed a distinct pattern in the yearly data, where most values were closely clustered together. However, the year 2012 stood out as an outlier in several states, suggesting unique crop conditions during that period. Based on the established relationships between NIRv peak and yield, we predicted crop yield data for 2022 and evaluated the accuracy of the predictions using the Root Mean Square Percentage Error (RMSPE). Our findings indicate the potential of NIRv peak in estimating crop yield at the county level, with varying accuracy across different counties.

작물 수확량의 정확하고 시기 적절한 추정은 세계적인 식량 안보 계획 및 농업 정책 개발을 포함하여 다양한 목적을 위해 중요하다. 원격 감지 기술은 특히 vegetation indices (VIs)를 활용한 작물 상태 모니터링과 예측에서 유망성을 보여주고 있다. 그러나 normalized difference vegetation index (NDVI) 와 enhanced vegetation index (EVI) 와 같은 전통적인 Vis는 식물광합성의 빠른 변화를 포착하는 데 제한이 있으며 작물 생산성을 정확하게 대표하지 못할 수 있다. 대체적인 Vis인 near-infrared reflectance of vegetation (NIRv)는 gross primary productivity (GPP)과 강한 상관관계를 가지며 빛이 반사할 때의 혼동을 해결하는 능력으로 인해 작물 생산량을 예측하는 더 나은 지표로 제안되었다. 연구 결과는 옥수수와 콩 모두에 대해 NIRv의 최댓값과 작물 수확량/면적 간에 유의한 상관관계가 있음을 입증했다. 이 상관관계는 콩에 대해 약간 더 강한 경향을 보였다. 게다가 대부분의 주요한 주에서는 NIRv의 최댓값과 생산량 간에 주목할 만한 관계가 있으며, 다양한 주에서 일관된 경사도를 보였다. 또한, 연간 데이터에서는 대부분의 값이 서로 밀접하게 군집되는 독특한 패턴을 관찰했다. 그러나 2012년은 다양한 주에서 독특한 작물 조건을 시사하는 이상값으로 나타났다. NIRv의 최댓값과 생산량 간의 확립된 관계를 기반으로, 우리는 2022년의 작물 수확량 데이터를 예측하고, 예측의 정확도를 Root Mean Square Percentage Error (RMSPE)를 사용하여 평가했다. 우리의 연구 결과는 지역별 작물 수확량 추정에 NIRv의 최댓값과 잠재력을 나타내며, 다양한 지역에서 정확도는 달라질 수 있다는 것을 보여줄 수 있다.

Keywords

Acknowledgement

This study is supported by the Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01475502) by Rural Development Administration, Republic of Korea. We thank Youngryel Ryu for his feedbacks to this manuscript.

References

  1. Ali, A. M., M. A. Abouelghar, A.-A. Belal, N. Saleh, M. Younes, A. Selim, M. E. Emam, A. Elwesemy, D. E. Kucher, and S. Magignan, 2022: Crop yield prediction using multi sensors remote sensing, The Egyptian Journal of Remote Sensing and Space Science.
  2. Arshad, S., J. H. Kazmi, M. G. Javed, and S. Mohammed, 2023: Applicability of machine learning techniques in predicting wheat yield based on remote sensing and climate data in Pakistan, South Asia, European Journal of Agronomy 147, 126837.
  3. Asseng, S., F. Ewert, C. Rosenzweig, J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. J. Thorburn, R. P. Rotter, and D. Cammarano, 2013: Uncertainty in simulating wheat yields under climate change, Nature Climate Change 3(9), 827-832. https://doi.org/10.1038/nclimate1916
  4. Azzari, G., M. Jain, and D. B. Lobell, 2017: Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries, Remote Sensing of Environment 202, 129-141. https://doi.org/10.1016/j.rse.2017.04.014
  5. Badgley, G., L. D. Anderegg, J. A. Berry, and C. B. Field, 2019: Terrestrial gross primary production: Using NIRV to scale from site to globe, Global Change Biology 25(11), 3731-3740. https://doi.org/10.1111/gcb.14729
  6. Badgley, G., C. B. Field, and J. A. Berry, 2017: Canopy near-infrared reflectance and terrestrial photosynthesis, Science advances 3(3), e1602244.
  7. Baldocchi, D. D., Y. Ryu, B. Dechant, E. Eichelmann, K. Hemes, S. Ma, C. R. Sanchez, R. Shortt, D. Szutu, and A. Valach, 2020: Outgoing near-infrared radiation from vegetation scales with canopy photosynthesis across a spectrum of function, structure, physiological capacity, and weather, Journal of Geophysical Research: Biogeosciences 125(7), e2019JG005534.
  8. Beck, P. S., C. Atzberger, K. A. Hogda, B. Johansen, and A. K. Skidmore, 2006: Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote Sensing of Environment 100(3), 321-334. https://doi.org/10.1016/j.rse.2005.10.021
  9. Bolton, D. K. and M. A. Friedl, 2013: Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics, Agricultural and Forest Meteorology 173, 74-84. https://doi.org/10.1016/j.agrformet.2013.01.007
  10. Campos-Taberner, M., A. Moreno-Martinez, F. J. Garcia-Haro, G. Camps-Valls, N. P. Robinson, J. Kattge, and S. W. Running, 2018: Global estimation of biophysical variables from Google Earth Engine platform, Remote Sensing 10(8), 1167.
  11. Chen, B., G. Xu, N. C. Coops, P. Ciais, J. L. Innes, G. Wang, R. B. Myneni, T. Wang, J. Krzyzanowski, and Q. Li, 2014: Changes in vegetation photosynthetic activity trends across the Asia-Pacific region over the last three decades, Remote Sensing of Environment 144, 28-41. https://doi.org/10.1016/j.rse.2013.12.018
  12. Clevers, J., 1997: A simplified approach for yield prediction of sugar beet based on optical remote sensing data, Remote Sensing of Environment 61(2), 221-228. https://doi.org/10.1016/S0034-4257(97)00004-7
  13. Estevez, J., M. Salinero-Delgado, K. Berger, L. Pipia, J. P. Rivera-Caicedo, M. Wocher, P. ReyesMunoz, G. Tagliabue, M. Boschetti, and J. Verrelst, 2022: Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data, Remote Sensing of Environment 273, 112958.
  14. Fan, H., S. Liu, J. Li, L. Li, L. Dang, T. Ren, and J. Lu, 2021: Early prediction of the seed yield in winter oilseed rape based on the near-infrared reflectance of vegetation (NIRv), Computers and Electronics in Agriculture 186, 106166.
  15. Fang, S., W. Tang, Y. Peng, Y. Gong, C. Dai, R. Chai, and K. Liu, 2016: Remote estimation of vegetation fraction and flower fraction in oilseed rape with unmanned aerial vehicle data, Remote Sensing 8(5), 416.
  16. Ferencz, C., P. Bognar, J. Lichtenberger, D. Hamar, G. Tarcsai, G. Timar, G. Molnar, S. Pasztor, P. Steinbach, and B. Szekely, 2004: Crop yield estimation by satellite remote sensing, International Journal of Remote Sensing 25(20), 4113-4149. https://doi.org/10.1080/01431160410001698870
  17. Fernandez-Martinez, M., R. Yu, J. Gamon, G. Hmimina, I. Filella, M. Balzarolo, B. Stocker, and J. Penuelas, 2019: Monitoring spatial and temporal variabilities of gross primary production using MAIAC MODIS data, Remote Sensing 11(7), 874.
  18. Franch, B., E. Vermote, I. Becker-Reshef, M. Claverie, J. Huang, J. Zhang, C. Justice, and J. A. Sobrino, 2015: Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information, Remote Sensing of Environment 161, 131-148. https://doi.org/10.1016/j.rse.2015.02.014
  19. Funk, C. and M. E. Budde, 2009: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe, Remote Sensing of Environment 113(1), 115-125. https://doi.org/10.1016/j.rse.2008.08.015
  20. Gamon, J. A., C. B. Field, M. L. Goulden, K. L. Griffin, A. E. Hartley, G. Joel, J. Penuelas, and R. Valentini, 1995: Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types, Ecological Applications 5(1), 28-41. https://doi.org/10.2307/1942049
  21. Gao, X., I. R. McGregor, J. M. Gray, M. A. Friedl, and M. Moon, 2023: Observations of satellite land surface phenology indicate that maximum leaf greenness is more associated with global vegetation productivity than growing season length, Global Biogeochemical Cycles. e2022GB007462.
  22. Garbulsky, M.F., J. Penuelas, R. Ogaya, and I. Filella, 2013: Leaf and stand-level carbon uptake of a Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI, International Journal of Remote Sensing 34(4), 1282-1296. https://doi.org/10.1080/01431161.2012.718457
  23. Garcia-Paredes, J., K. Olson, and J. Lang, 2000: Predicting corn and soybean productivity for Illinois soils, Agricultural Systems 64(3), 151-170. https://doi.org/10.1016/S0308-521X(00)00020-2
  24. Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, 2017: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
  25. Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought, Bulletin of the American Meteorological Society 95(2), 269-282. https://doi.org/10.1175/BAMS-D-13-00055.1
  26. Huang, X., J. Xiao, and M. Ma, 2019: Evaluating the performance of satellite-derived vegetation indices for estimating gross primary productivity using FLUXNET observations across the globe, Remote Sensing 11(15), 1823.
  27. Johnson, D.M., 2014: An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States, Remote Sensing of Environment 141, 116-128. https://doi.org/10.1016/j.rse.2013.10.027
  28. Kumar, L. and O. Mutanga, 2018: Google Earth Engine applications since inception: Usage, trends, and potential, Remote Sensing 10(10), 1509.
  29. Lai, P., M. Zhang, Z. Ge, B. Hao, Z. Song, J. Huang, M. Ma, H. Yang, and X. Han, 2020: Responses of seasonal indicators to extreme droughts in Southwest China, Remote Sensing 12(5), 818.
  30. Li, L., B. Wang, P. Feng, D. Li Liu, Q. He, Y. Zhang, Y. Wang, S. Li, X. Lu, and C. Yue, 2022: Developing machine learning models with multi-source environmental data to predict wheat yield in China, Computers and Electronics in Agriculture 194, 106790.
  31. Li, L., B. Wang, P. Feng, H. Wang, Q. He, Y. Wang, D. Li Liu, Y. Li, J. He, and H. Feng, 2021: Crop yield forecasting and associated optimum lead time analysis based on multi-source environmental data across China, Agricultural and Forest Meteorology 308, 108558.
  32. Lobell, D. B., 2013: The use of satellite data for crop yield gap analysis, Field Crops Research 143, 56-64. https://doi.org/10.1016/j.fcr.2012.08.008
  33. Lobell, D. B., D. Thau, C. Seifert, E. Engle, and B. Little, 2015: A scalable satellite-based crop yield mapper, Remote Sensing of Environment 164, 324-333. https://doi.org/10.1016/j.rse.2015.04.021
  34. Lu, J., G. J. Carbone, and P. Gao, 2017: Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895-2014, Agricultural and Forest Meteorology 237, 196-208. https://doi.org/10.1016/j.agrformet.2017.02.001
  35. Pan, L., H. Xia, J. Yang, W. Niu, R. Wang, H. Song, Y. Guo, and Y. Qin, 2021: Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine, International Journal of Applied Earth Observation and Geoinformation 102, 102376.
  36. Paruelo, J. M., H. E. Epstein, W. K. Lauenroth, and I. C. Burke, 1997: ANPP estimates from NDVI for the central grassland region of the United States, Ecology 78(3), 953-958. https://doi.org/10.1890/0012-9658(1997)078[0953:AEFNFT]2.0.CO;2
  37. Peng, B., K. Guan, W. Zhou, C. Jiang, C. Frankenberg, Y. Sun, L. He, and P. Kohler, 2020: Assessing the benefit of satellite-based Solar-Induced Chlorophyll Fluorescence in crop yield prediction, International Journal of Applied Earth Observation and Geoinformation 90, 102126.
  38. Qiu, R., X. Li, G. Han, J. Xiao, X. Ma, and W. Gong, 2022: Monitoring drought impacts on crop productivity of the US Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv, Agricultural and Forest Meteorology 323, 109038.
  39. Rosenzweig, C., J. Elliott, D. Deryng, A. C. Ruane, C. Muller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, and N. Khabarov, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison, Proceedings of the National Academy of Sciences 111(9), 3268-3273. https://doi.org/10.1073/pnas.1222463110
  40. Roznik, M., M. Boyd, and L. Porth, 2022: Improving crop yield estimation by applying higher resolution satellite NDVI imagery and high-resolution cropland masks, Remote Sensing Applications: Society and Environment 25, 100693.
  41. Shammi, S.A. and Q. Meng, 2021: Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling, Ecological Indicators 121, 107124.
  42. Shanahan, J. F., J. S. Schepers, D. D. Francis, G. E. Varvel, W. W. Wilhelm, J. M. Tringe, M. R. Schlemmer, and D. J. Major, 2001: Use of remote -sensing imagery to estimate corn grain yield, Agronomy Journal 93(3), 583-589. https://doi.org/10.2134/agronj2001.933583x
  43. Shen, Y., X. Zhang, and Z. Yang, 2022: Mapping corn and soybean phenometrics at field scales over the United States Corn Belt by fusing time series of Landsat 8 and Sentinel-2 data with VIIRS data, ISPRS Journal of Photogrammetry and Remote Sensing 186, 55-69. https://doi.org/10.1016/j.isprsjprs.2022.01.023
  44. Song, L., L. Guanter, K. Guan, L. You, A. Huete, W. Ju, and Y. Zhang, 2018: Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains, Global Change Biology 24(9), 4023-4037. https://doi.org/10.1111/gcb.14302
  45. Venkatappa, M., N. Sasaki, P. Han, and I. Abe, 2021: Impacts of droughts and floods on croplands and crop production in Southeast Asia-An application of Google Earth Engine, Science of the Total Environment 795, 148829.
  46. Wang, R., J. A. Gamon, C. A. Emmerton, K. R. Springer, R. Yu, and G. Hmimina, 2020: Detecting intra-and inter-annual variability in gross primary productivity of a North American grassland using MODIS MAIAC data, Agricultural and Forest Meteorology 281, 107859.
  47. Wang, S., Y. Zhang, W. Ju, B. Qiu, and Z. Zhang, 2021: Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data, Science of the Total Environment 755, 142569.
  48. Wang, X., S. Wang, X. Li, B. Chen, J. Wang, M. Huang, and A. Rahman, 2020: Modelling rice yield with temperature optima of rice productivity derived from satellite NIRv in tropical monsoon area, Agricultural and Forest Meteorology 294, 108135.
  49. Wong, C.Y., P. D'Odorico, M. A. Arain, and I. Ensminger, 2020: Tracking the phenology of photosynthesis using carotenoid-sensitive and near-infrared reflectance vegetation indices in a temperate evergreen and mixed deciduous forest, New Phytologist 226(6), 1682-1695. https://doi.org/10.1111/nph.16479
  50. Wu, G., K. Guan, C. Jiang, B. Peng, H. Kimm, M. Chen, X. Yang, S. Wang, A. E. Suyker, and C. J. Bernacchi, 2020: Radiance-based NIRv as a proxy for GPP of corn and soybean, Environmental Research Letters 15(3), 034009.
  51. Yu, G., L. Di, Z. Yang, Z. Chen, and B. Zhang, 2012: Crop condition assessment using high temporal resolution satellite images. 2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics).
  52. Zeng, Y., G. Badgley, B. Dechant, Y. Ryu, M. Chen, and J. A. Berry, 2019: A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence, Remote Sensing of Environment 232, 111209.
  53. Zhang, J., J. Xiao, X. Tong, J. Zhang, P. Meng, J. Li, P. Liu, and P. Yu, 2022: NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests, Agricultural and Forest Meteorology 315, 108819.
  54. Zhang, Z., J. Xiong, M. Fan, M. Tao, Q. Wang, and Y. Bai, 2023: Satellite-observed vegetation responses to aerosols variability, Agricultural and Forest Meteorology 329, 109278.
  55. Zhou, B., G. S. Okin, and J. Zhang, 2020: Leveraging Google Earth Engine (GEE) and machine learning algorithms to incorporate in situ measurement from different times for rangelands monitoring, Remote Sensing of Environment 236, 111521.
  56. Zhou, W., Y. Liu, S. T. Ata-Ul-Karim, Q. Ge, X. Li, and J. Xiao, 2022: Integrating climate and satellite remote sensing data for predicting county-level wheat yield in China using machine learning methods, International Journal of Applied Earth Observation and Geoinformation 111, 102861.