DOI QR코드

DOI QR Code

Numerical Experiments of Vegetation Growth Effects on Bed Change Patterns

식생생장 영향을 고려한 하도변화에 대한 수치모의

  • Kim, Hyung Suk (Korea Institute of Civil Engineering and Building Technology, River and Coastal Research Division) ;
  • Park, Moon Hyeong (Korea Institute of Civil Engineering and Building Technology, River and Coastal Research Division) ;
  • Woo, Hyo Seop (Korea Institute of Civil Engineering and Building Technology, River and Coastal Research Division)
  • 김형석 (한국건설기술연구원, 하천해안연구실) ;
  • 박문형 (한국건설기술연구원, 하천해안연구실) ;
  • 우효섭 (한국건설기술연구원, 하천해안연구실)
  • Published : 2014.10.31

Abstract

In this study, the numerical simulation regarding the process and characteristics of topography change due to the vegetation recruitment and growth was carried out by adding the vegetation growth model to two-dimensional flow and sediment transport models. The vegetation introduction and recruitment on the condition for developing an alternate bar reduced the bar migration. The vegetated area and channel width changes were more significantly influenced by changes in upstream discharge rather than the duration of low flow. When the upstream discharge decreased, the vegetation area increased and the channel width decreased. The vegetation introduction and recruitment on the condition for developing a braided channel significantly influenced the characteristics of topography changes. In the braided channel, vegetation reduced the braided index, and when the upstream discharge decreased significantly, the channel topography was changed from the braided channel to the single channel. The vegetation area decreased as the upstream discharge increased. The channel width decreased significantly after the vegetation was introduced and it also decreased as the upstream discharge decreased. It was confirmed through the numerical simulation that a decrease in flood discharge accelerated the vegetation introduction and recruitment in the channel and this allowed to confirm its influence on the characteristics of topography changes qualitatively.

본 연구에서는 2차원 흐름/유사이동 모형에 식생생장모형을 추가하여 하도의 식생 활착 및 성장에 의한 지형변화 과정과 특성을 수치모의 하였다. 교호사주가 발달하는 조건에서 식생 이입 및 활착은 사주의 이동을 감소시켰다. 식생면적 및 하폭의 변화는 저유량 지속시간보다 상류유량 변화에 더 크게 영향을 받았다. 상류유량이 감소하면 식생면적은 증가하고 하도폭은 감소하였다. 망상하도가 발달하는 조건에서 하도내 식생 이입 및 활착은 지형변화 특성에 크게 영향을 미쳤다. 망도하도에서 식생은 망상의 수를 감소시키고 결국 상류유량이 크게 감소하면 하도지형을 망상하도에서 단일수로로 변화시켰다. 식생면적은 상류유량이 증가함에 따라 감소하였다. 하도폭은 식생 도입 후 급격히 줄어들었고 상류유량 감소와 함께 감소하였다. 수치모의를 이용하여 홍수량 감소가 하도 내의 식생 이입 및 활착을 가속시키고 이로 인해 하도변화 특성에 미치는 영향을 정성적으로 확인할 수 있음을 보였다.

Keywords

References

  1. Akahori, R., Yamaguchi, S., Kimura, I., Iwasaki, T., Shimizu, Y., and Hasegawa, K. (2011). "Evolution of channel bed topography in a 50-meter laboratory flume under various hydraulic conditions of bars instability and resonance." Proc. of River, Coastal and Estuarine Morphodynamics: RCEM 2011, Beijing, China.
  2. Asahi, K., Shimizu, Y., Nelson, J., and Parker, G. (2013). "Numerical simulations of river meandering with selfevolving banks." J. Geophys. Res., Vol. 118, No. 4, pp. 2208-2229. https://doi.org/10.1002/jgrf.20150
  3. Bennett, S., Pirim, T., and Barkdoll, B. (2002). "Using simulated emergent vegetation to alter stream flow direction within a straight experimental channel." Geomorphology, Vol. 44, pp.115-126. https://doi.org/10.1016/S0169-555X(01)00148-9
  4. Crosato, A., and Saleh, M. S. (2010). "Numerical study on the effects of floodplain vegetation on river planform style." Earth Surf. Process Land forms, Vol. 36, pp. 711-720.
  5. Engelund, F. (1974). "Flow and bed topography in channel bend." J. Hydraul. Div., Vol. 100, No. 11, pp. 1631-1648.
  6. Jang, C.-L., and Shimizu, Y. (2005). "Numerical simulations of behavior of alternate bars with different bank strengths" J. Hydraul. Eng., Vol. 43, No.6, pp. 595-611. https://doi.org/10.1080/00221680509500379
  7. Jang, C.-L., and Shimizu, Y. (2007). "Vegetation effects on the morphological behavior of alluvial channels." J. Hydraul. Res., Vol. 45, No. 6, pp. 763-772. https://doi.org/10.1080/00221686.2007.9521814
  8. Kang, H. and Choi, S.-U. (2007). "Numerical Investigation of Streamwise Vortical structures in fully vegetated open-channel flows." Journal of the Korean Society of Civil Engineers. Vol. 27, No.3B, pp. 289-299. (in Korean)
  9. Kim, T. B., Bae, H. D., and Choi, S.-U. (2010). "Development and application of depth-integeated 2-D numerical model for the simulation of hydraulic characteristics in vegetated open-channels." Journal of the Korean Society of Civil Engineers. Vol. 30, No.6B, pp. 607-615. (in Korean)
  10. Kuroki, M., and Kish, T. (1984). "Regime criteria on bars and braids in alluvial straight channels." Proc. JSCE., Vol. 342, pp. 87-96. (in Japanese)
  11. Lopez, M., and Garcia, M. (2001). "Mean flow and turbulence structure of open channel flow through non-emergent vegetation. " J. Hydraul. Eng., Vol. 127, pp. 392-402. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392)
  12. Meyer-Peter, E., and Muller, R. (1948). "Formulas for bed-load transport." Proc. 2nd Congress, IAHR, Stockholm, Sweden. Vol. 2, No. 2, pp. 39-64.
  13. Nepf, H., and Vivoni, E. (2000). "Flow structures in depth-limited, vegetated flow." J. Geophys. Res., Vol. 105, No. 28, pp. 547-557.
  14. Parker, G. (1976). "On the cause and characteristic scales of meandering and braiding in rivers." J. Fluid Mech., Vol.76, No. 4, pp. 457-479. https://doi.org/10.1017/S0022112076000748
  15. Tal, M., and Paola, C. (2010). "Effects of vegetation on channel morphodynamics: results and insights from laboratory experiments." Earth Surf. Process Land forms, Vol. 35, pp. 1014-1028. https://doi.org/10.1002/esp.1908
  16. Tal, M., and Paola, C. (2007). "Dynamic single-thread channels maintained by the interaction flow and vegetation." Geology. Vol. 35, No. 4, pp. 347-350. https://doi.org/10.1130/G23260A.1
  17. Tsujimoto, T. (1999). "Fluvial processes in streams with vegetation." J. Hydraul. Res., Vol. 106, No. 6, pp. 789-803.
  18. Van De Wiel, M., and Darby, S. E. (2004). "Numerical modeling of bed topography and bank erosion along tree-lined meandering rivers." Riparian vegetation and fluvial geomorphology, Bettett S, Simon A(eds).AGU, Washington DC.
  19. Watanabe, A., Fukuoka, S., Yasutake, Y., and Kawakuchi, H. (2001). "Groin arrangements made of natural willows for reducing bed deformation in a curved channel." Advances in River Engineering, Vol. 7, pp. 285-290.
  20. Wu, W., Shields, F. D., Bennett, S., and Wang, S. S. Y. (2005). "A depth-averaged two-dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation." Water Resour. Res., 41, W03015.

Cited by

  1. 하도 내 식생의 물리적 구조를 산정하기 위한 3차원 지상 레이저 스캐닝의 도입 및 활용 vol.7, pp.2, 2020, https://doi.org/10.17820/eri.2020.7.2.090