• Title/Summary/Keyword: Vector pursuit

Search Result 19, Processing Time 0.02 seconds

A research on non-interactive multi agents by ACS & Direction vector algorithm (ACS & 방향벡터 알고리즘을 이용한 비 대화형 멀티에이전트 전략에 관한 연구)

  • Kim, Hyun;Yoon, Seok-Hyun;Chung, Tae-Choong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.11-18
    • /
    • 2010
  • In this paper, We suggest new strategies on non-interactive agents applied in a prey pursuit problem of multi agent research. The structure of the prey pursuit problem by grid space(Four agent & one prey). That is allied agents captured over one prey. That problem has long been known in interactive, non-interactive of multi agent research. We trying hard to find its own solution from non-interactive agent method on not in the same original environment(circular environment). We used ACS applied Direction vector to learning and decide on a direction. Exchange of information between agents have been previously presented (an interactive agent) out of the way information exchange ratio (non-interactive agents), applied the new method. Can also solve the problem was to find a solution. This is quite distinct from the other existing multi agent studies, that doesn't apply interactive agents but independent agent to find a solution.

Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit for Multiple Measurement Vectors (병렬OMP 기법을 통한 복수 측정 벡터기반 성긴 신호의 복원)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2252-2258
    • /
    • 2013
  • In this paper, parallel orthogonal matching pursuit (POMP) is proposed to supplement the simultaneous orthogonal matching pursuit (S-OMP) which has been widely used as a greedy algorithm for sparse signal recovery for multiple measurement vector (MMV) problem. The process of POMP is simple but effective: (1) multiple indexes maximally correlated with the observation vector are chosen at the first iteration, (2) the conventional S-OMP process is carried out in parallel for each selected index, (3) the index set which yields the minimum residual is selected for reconstructing the original sparse signal. Empirical simulations show that POMP for MMV outperforms than the conventional S-OMP both in terms of exact recovery ratio (ERR) and mean-squared error (MSE).

Fast Matching Pursuit based on Vector Length Comparison (벡터길이 비교를 이용한 고속 Matching Pursuit)

  • O, Seok-Byeong;Jeon, Byeong-U
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2001
  • Matching pursuit algorithm was successfully demonstrated useful in low bit-rate video coding, However, one of the practical concerns related to applying the matching pursuit algorithm to application is its massive computation required for finding bases whose weighted sum best approximates the given input image. The main contribution of this paper is that we provide a new method that can drastically reduce the computational load without any degradation of image quality. Its main idea is based on reducing the number of inner product calculation required for finding best bases because the complexity of matching pursuit algorithm is due to the exhaustive local inner product calculation. As the first step, we compute a matrix which is the 1-D inner product of the given motion-compensated error input image with the 1-D vertical Gabor functions using the separable property of Gabor bases. In the second step, we calculate length of each vector in the matrix that corresponds to 1-D horizontal Gabor function, and compare the length with the current maximum absolute inner product value so far. According to the result of this comparison, one can decide whether or not to calculate the inner product. Since most of them do not need to calculate the inner product value, one can significantly reduce the computational load. Experimental results show that proposed method reduces about 70% of inner product calculation compared to the Neff's fast algorithm without any degradation of image quality.

  • PDF

Kernel Adatron Algorithm for Supprot Vector Regression

  • Kyungha Seok;Changha Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.843-848
    • /
    • 1999
  • Support vector machine(SVM) is a new and very promising classification and regression technique developed by Bapnik and his group at AT&T Bell laboratories. However it has failed to establish itself as common machine learning tool. This is partly due to the fact that SVM is not easy to implement and its standard implementation requires the optimization package for quadratic programming. In this paper we present simple iterative Kernl Adatron algorithm for nonparametric regression which is easy to implement and guaranteed to converge to the optimal solution and compare it with neural networks and projection pursuit regression.

  • PDF

The Application of Direction Vector Function for Multi Agents Strategy and The Route Recommendation System Research in A Dynamic Environment (멀티에이전트 전략을 위한 방향벡터 함수 활용과 동적 환경에 적응하는 경로 추천시스템에 관한 연구)

  • Kim, Hyun;Chung, Tae-Choong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.78-85
    • /
    • 2011
  • In this paper, a research on multi-agent is carried out in order to develop a system that can provide drivers with real-time route recommendation by reflecting Dynamic Environment Information which acts as an agent in charge of Driver's trait, road condition and Route recommendation system. DEI is equivalent to number of n multi-agent and is an environment variable which is used in route recommendation system with optimal routes for drivers. Route recommendation system which reflects DEI can be considered as a new field of topic in multi-agent research. The representative research of Multi-agent, the Prey Pursuit Problem, was used to generate a fresh solution. In this thesis paper, you will be able to find the effort of indulging the lack of Prey Pursuit Problem,, which ignored practicality. Compared to the experiment, it was provided a real practical experiment applying the algorithm, the new Ant-Q method, plus a comparison between the strategies of the established direction vector was put into effect. Together with these methods, the increase of the efficiency was able to be proved.

Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit and Its Performances (병렬OMP 기법을 통한 성긴신호 복원과 그 성능)

  • Park, Jeonghong;Jung, Bang Chul;Kim, Jong Min;Ban, Tae Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1784-1789
    • /
    • 2013
  • In this paper, parallel orthogonal matching pursuit (POMP) is proposed to supplement the orthogonal matching pursuit (OMP) which has been widely used as a greedy algorithm for sparse signal recovery. The process of POMP is simple but effective: (1) multiple indexes maximally correlated with the observation vector are chosen at the firest iteration, (2) the conventional OMP process is carried out in parallel for each selected index, (3) the index set which yields the minimum residual is selected for reconstructing the original sparse signal. Empirical simulations show that POMP outperforms than the existing sparse signal recovery algorithms in terms of exact recovery ratio (ERR) for sparse pattern and mean-squared error (MSE) between the estimated signal and the original signal.

High-throughput and low-area implementation of orthogonal matching pursuit algorithm for compressive sensing reconstruction

  • Nguyen, Vu Quan;Son, Woo Hyun;Parfieniuk, Marek;Trung, Luong Tran Nhat;Park, Sang Yoon
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.376-387
    • /
    • 2020
  • Massive computation of the reconstruction algorithm for compressive sensing (CS) has been a major concern for its real-time application. In this paper, we propose a novel high-speed architecture for the orthogonal matching pursuit (OMP) algorithm, which is the most frequently used to reconstruct compressively sensed signals. The proposed design offers a very high throughput and includes an innovative pipeline architecture and scheduling algorithm. Least-squares problem solving, which requires a huge amount of computations in the OMP, is implemented by using systolic arrays with four new processing elements. In addition, a distributed-arithmetic-based circuit for matrix multiplication is proposed to counterbalance the area overhead caused by the multi-stage pipelining. The results of logic synthesis show that the proposed design reconstructs signals nearly 19 times faster while occupying an only 1.06 times larger area than the existing designs for N = 256, M = 64, and m = 16, where N is the number of the original samples, M is the length of the measurement vector, and m is the sparsity level of the signal.

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

Joint Estimation of TOA and DOA in IR-UWB System Using Sparse Representation Framework

  • Wang, Fangqiu;Zhang, Xiaofei
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.460-468
    • /
    • 2014
  • This paper addresses the problem of joint time of arrival (TOA) and direction of arrival (DOA) estimation in impulse radio ultra-wideband systems with a two-antenna receiver and links the joint estimation of TOA and DOA to the sparse representation framework. Exploiting this link, an orthogonal matching pursuit algorithm is used for TOA estimation in the two antennas, and then the DOA parameters are estimated via the difference in the TOAs between the two antennas. The proposed algorithm can work well with a single measurement vector and can pair TOA and DOA parameters. Furthermore, it has better parameter-estimation performance than traditional propagator methods, such as, estimation of signal parameters via rotational invariance techniques algorithms matrix pencil algorithms, and other new joint-estimation schemes, with one single snapshot. The simulation results verify the usefulness of the proposed algorithm.