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This paper addresses the problem of joint time of arrival 
(TOA) and direction of arrival (DOA) estimation in 
impulse radio ultra-wideband systems with a two-antenna 
receiver and links the joint estimation of TOA and DOA to 
the sparse representation framework. Exploiting this link, 
an orthogonal matching pursuit algorithm is used for 
TOA estimation in the two antennas, and then the DOA 
parameters are estimated via the difference in the TOAs 
between the two antennas. The proposed algorithm can 
work well with a single measurement vector and can pair 
TOA and DOA parameters. Furthermore, it has better 
parameter-estimation performance than traditional 
propagator methods, such as, estimation of signal 
parameters via rotational invariance techniques 
algorithms matrix pencil algorithms, and other new joint-
estimation schemes, with one single snapshot. The 
simulation results verify the usefulness of the proposed 
algorithm.  
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I. Introduction 

Impulse radio ultra-wideband (IR–UWB) has recently 
attracted considerable interest for indoor geolocation and 
sensor networks due to its intrinsic properties, such as 
immunity to multipath fading, extremely short duration pulse, 
being carrier free, having a low-duty cycle, wide bandwidth, 
and low-power spectral density [1]–[5]. On account of the high 
time resolution nature, UWB positioning based on time-of-
arrival (TOA) estimation methods becomes a superior 
alternative. Furthermore, if direction of arrival (DOA) can also 
be estimated in the positioning system it would reduce the 
number of reference nodes needed to estimate the position of 
UWB sources. 

Recently the joint estimation of TOA and DOA is a hot topic 
in IR-UWB communication systems, and many techniques 
have been proposed to obtain accurate TOA and DOA 
estimates. In [6] and [7], TOA estimation was accomplished by 
using a matched filter but had strong practical limitations due to 
the requirement of extremely high sampling rates and 
complexity. To reduce the complexity at sub-Nyquist sampling 
rates, the non-coherent algorithms based on energy detection 
were proposed in [8] and [9]. However, the precision of the 
TOA estimates decreased. Besides, the above algorithms 
consider the TOA estimation as a timing acquisition problem; 
TOA estimation was also linked to frequency domain and to 
super-resolution techniques such as the multiple signal 
classification (MUSIC) algorithm [10], [11], minimum-norm 
algorithm [12] and propagator method (PM) [13]. These 
algorithms are applied after the estimated channel-impulse 
response is transformed to frequency domain and offers high-
resolution TOA estimation. However, the estimators obtain the 
TOA estimates by spectral peak searching, which has high 
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complexity and large computation. In other works, such as [14], 
a union-of-subspaces approach was proposed to recover the 
time delays and time-varying gain coefficients of each 
multipath component from low-rate samples of the received 
signal. 

In addition to TOA, DOA is also one of the significant 
parameters in UWB communication systems, and the problem 
of DOA estimation has attracted considerable attention in 
earlier literatures. In [15], a frequency-domain MUSIC 
algorithm was presented for the estimation and tracking of 
UWB signals. In [16], the iterative quadratic maximum 
likelihood algorithm was applied to yield DOA estimates in 
UWB communication systems. In [17], a beamspace-based 
DOA estimation method for direct-sequence UWB signals was 
proposed using the frequency-domain frequency-invariant 
beamformers algorithm. DOA estimators, however, cannot 
explicitly exploit the advantage of the large bandwidth of 
UWB signals. Actually, TOA and DOA are closely related and 
can be jointly estimated [18]–[21]. In [18], the matrix pencil 
algorithm was extended to joint TOA and DOA estimation for 
UWB positioning. The scheme proposed in [19] performs 
timing acquisition following a two-step approach: a coarse 
TOA estimator based on a minimum distance criterion, and a 
fine TOA estimator based on calculation of power delay profile 
and the selection of a suitable threshold. Finally, the DOA is 
obtained from the independent TOA measurements at each 
array antenna by means of a linear estimator. In [20], the joint 
TOA and angle-of-arrival (AoA) estimator utilizes an array of 
antennas, each feeding a demodulator consisting of a squarer 
and a low-pass filter. Signal samples, taken at Nyquist rate at 
the filter outputs, are processed to produce TOA and AoA 
estimates. In [21], a joint space-time technique for UWB 
signals based on the extended MUSIC algorithm was 
presented. All those joint TOA and DOA estimation methods 
extract the DOA estimation from the TOA, and because of the 
high time nature of the UWB signals, DOA estimates can be 
obtained with reasonable accuracy. 

Compressed sensing (CS), which is a novel theory 
introduced in [22], [23], unifies signal sensing and compression 
into a single task and can recover the sparse signal with high 
probability, from a set of random linear projections using 
nonlinear reconstruction algorithms. In addition to the signal 
reconstruction and restoration [22], [23], the CS framework has 
also been applied to UWB communication systems for signal 
detection, channel estimation, and TOA estimation [24]–[32]. 
In this paper, we propose a joint TOA and DOA estimation 
algorithm for IR-UWB signals, based on the sparse 
representation framework, with a two-antenna receiver. After 
transforming the received signals to the frequency domain, the 
estimation problems are linked to the sparse representation 

framework. Exploiting this link, an orthogonal matching 
pursuit (OMP) algorithm is used for TOA estimation in the two 
antennas, and then DOA parameters are estimated via the 
difference of the TOAs between the two antennas. The 
proposed algorithm can work well with one single snapshot 
and can pair TOA and DOA parameters. Furthermore, it has 
better parameter-estimation performance than the traditional 
PMs, such as, estimation of signal parameters via rotational 
invariance techniques (ESPRIT) algorithm, matrix pencil 
algorithm, and other, new, joint schemes in [19] and [20], with 
a single measurement vector (SMV). The simulation results 
verify the usefulness of the proposed algorithm. 

The remainder of this paper is structured as follows. Section 
II develops the data model, and section III presents the 
proposed algorithm. The Cramér-Rao bound (CRB) of the 
joint estimation performance is derived in section IV. In section 
V, simulation results are presented to verify the improvements 
for the proposed algorithm, while our conclusions are shown in 
section VI. 

Notation: Bold lowercase letters represent vectors and bold 
uppercase letters represent matrices. The symbols 

*( ) , ( ) , ( ) ,T H   1( ) and ( )  denote the complex 
conjugation, transpose, conjugate-transpose, inverse, and 
pseudo-inverse, respectively. The symbol 

F
 stands for 

Frobenius norm. A diagonal matrix whose diagonal is the 
vector v is represented by diag(v). We denote an estimated 
expression by ( ) . 

II. Data Model 

We assume that each information symbol is typically 
implemented by the repetition of Nc short pulses with 
modulation of direct-sequence binary phase-shift keying (DS-
BPSK). The transmitted signal can be represented as 

1

0

( ) ( )
cN

i n s c
i n

s t b c p t iT nT


 

    ,          (1) 

where { 1, 1}ib     and { 1, 1}nc    are the information 
symbols and the user-specific code sequence, respectively. The 
pulse waveform is referred to as p(t), which is the second 
derivative of a Gaussian pulse with Ts being the symbol 
duration and Tc being the chip duration. The transmitted UWB 
signal passes through a multipath channel, which is modeled, 
as in [33], by 

1

( ) ( ),
K

k k
k

h t t  


                (2) 

where k  and k  are the fading coefficient and the 
propagation delay of the kth path, respectively. Without loss of 
generality, we assume 1 2 K     . The Dirac Delta 
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function is represented by ( ),t and K is the number of 
multipath components. Thus, the received signal can be 
expressed as the summation of multiple delayed and attenuated 
replicas of the transmitted signal plus the additive Gaussian 
white noise w(t), that is 

1

( )= ( ) (t)
K

k k
k

y t s t w 


  .            (3) 

Performing a Fourier transformation on the received signal in 
(3), we can obtain 

1

( ) ( ) ( )k

K
j

k
k

Y S e W   



  ,        (4) 

where Y(ω), S(ω), and W(ω) denote the Fourier transformation 
of  y(t), s(t), and w(t), respectively. Then, sampling (4) at 

,m n   for 0, 1,..., 1m M  and = 2π/ ( ),M M K   
and rearranging the frequency samples Y(ω) into vector 

1
0 1[ ( ) ... ( )] ,T M

MY Y  
 y   yields the frequency 

domain signal model 

 y SE β w ,              (5) 

where M MS   is a diagonal matrix whose components are 
the frequency samples S(ωm), and [ (1) ... E e  

( )] M KK e   is a delay matrix with the column vectors 
being ( 1)( ) [1 ... ]k kj j M Tk e e     e  for 1,..., .k K  
The channel-fading coefficients are arranged in the vector 

1
1[ ... ] ,K

K
T   β  and the noise samples are arranged in 

vector 1
0 1[ ( ) ... ( )]T M

MW W  
 w  . 

III. Joint Estimation of TOA and DOA 

1. The Strategy for Joint Estimation of TOA and DOA  

The UWB signal s(t) propagates through the K-path fading 
channel and arrives at an array consisting of two antennas, 
which is shown in Fig. 1. 

Assume that k  and k  are the TOAs of the kth path in 
antenna 1 and antenna 2 for 1,...,k K . According to the 

 

 

Fig. 1. A two-antenna receiver for joint TOA and DOA. 
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above data model, the received signals in the frequency domain 
of each antenna can be expressed as 

1 1, y SE β w                 (6) 

2 2 y SE β w ,                (7) 

where 0 1diag([ ( ) ... ( )])MS S  S  is a diagonal matrix 

whose components are the frequency samples of transmitted 

UWB signal s(t). The delay matrices E  and E  can be 

denoted by 
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 (9) 

where 1
1[ ... ] K

K
T   β   represents the channel-fading 

coefficients. Noise samples of antenna 1 and antenna 2 are 

arranged in 1
1 1 0 1 1[ ( ) ... ( )]T M

MW W  
 w  and 2 w  

1
2 0 2 1[ ( ) ... ( )]T M

MW W  
  , respectively. 

Let   
k k k     , which is the difference of the TOAs 

associated to the kth path. From Fig. 1, we get 

c sink kd   ,              (10) 

with k  being the DOA of the kth path, d the distance 

between the two antennas, and c the speed of light. According 

to (10), we can obtain the closed-form solution of k , that is 

 c
arcsin( ), 1, , .k

k k K
d





          (11) 

From (11), we know that to obtain the estimation of DOAs, we 
must estimate the multipath delays in the two antennas first. So, 
in the following subsection, we will present the method to 
estimate the TOAs. 

2. TOA Estimation Based on Sparse Representation 

In this subsection, we formulate the TOA estimation problem 
as a sparse representation problem. To solve (6) and (7) with a 
sparse representation, we generalize the delay matrices E and 

E  to an overcomplete dictionary E  in terms of all possible 

TOAs    1 2, ,..., N   with   
1 2 N     , such that 

  
1 2( ) ( ) ... ( )N     E e e e ,        (12) 
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with N being the grid number, and , .N K N M   Note 

that E is known and does not depend on the actual multipath 

arrival times k  and k  in this framework. Thus, the 

channel-fading coefficients vector β  can be extended to an 

N×1 vector h, where the nth element hn is nonzero and equal to 

k  if the arrival time of the kth multipath component is n  

and zero otherwise. It means that we can estimate the TOA as 

long as we find the position of nonzero values in h. Using the 

overcomplete dictionary E, (6) and (7) become 

1 1 1, y SEh w                  (13) 

2 2 2 y SEh w .                (14) 

Note, that we consider an SMV, that is, a single snapshot in the 
paper. Let Ψ SE and we have 

1 1 1, y Ψh w                 (15) 

2 2 2 y Ψh w .                (16) 

For this case, h1 and h2 are sparse vectors which can be used to 
improve the TOAs estimation. To use the sparse property as a 
constraint, we utilize the l0 norm to arrive at the following 
optimization: 


01

2

1 1 1 1 2
arg min s.t. ,

l
  

h
h h y Ψh     (17) 


02

2

2 2 2 2 2
arg min s.t. ,

l
  

h
h h y Ψh    (18) 

where 
0l

h  counts the number of nonzero entries in ,h  
and   is the maximum acceptable error. These problems can 
be solved by linear programming techniques, such as in the 
sparse approximation algorithm OMP. The major advantages 
of this algorithm are its speed and its ease of implementation 
[34]. The OMP algorithm tries to recover the signal by finding 
in the measurement signal the strongest component, removing 
it from the signal, and searching the dictionary again for the 
strongest atom that is presented in the residual signal. The 
detailed recovery processing via the OMP algorithm is shown 
in Fig. 2. 
Input: 

An M×M diagonal matrix S. 
An M×N overcomplete dictionary E. 
An M-dimensional data vector y. 

Output: 
An estimate ĥ . 
A set containing k elements from {1,…, N}. 
An M-dimensional approximation am of the data y. 
An M-dimensional residual k k r y a . 

Procedure: 
1) Initialize the residual r0 = y, the index set 0  , and 

 

Fig. 2. Flowchart of OMP algorithm. 
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the iteration counter t = 1. 
2) Find the index λt that solves the easy optimization 

problem 1
1, ,

arg max ,t t j
j N

 
 r φ


, where jφ  is the jth 

column vector of Ψ . If the maximum occurs for multiple 
indices, break the tie deterministically. 

3) Augment the index set and the matrix of chosen 

atoms  1t t t     and 1 tt t    F F φ . We use 

the convention that F0 is an empty matrix. 
4) Solve a least-squares problem to obtain a new signal 

estimate .t t
q F y  

5) Calculate the new approximation of the data t t ta F q  
and the new residual .t t r y a  

6) Increment t, and return to step 2) if t < K. 
7) The estimate h  for the ideal signal, has nonzero indices 

at the components listed in k . The value of the estimate 
h  in component λj equals the jth component of qt. 

The two K-sparse vectors h1 and h2 can be recovered by the 
above OMP algorithm, and TOA estimates in the two antennas 
can be equivalent to finding the sufficiently sparse h1 and h2 
provided that the error terms are well suppressed. The TOA 
estimations  1{ }K

k k   and  1{ }K
k k   are determined from the 

sparse structure by plotting h1 and h2 on the grid of time 
samples. 

3. Pair Matching of TOA in Two Antennas 

Since the estimated multipath delays  1{ }K
k k   and  1{ }K

k k   
are obtained independently, we should associate these estimates 
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so that we can get the DOA estimates via (11). From (6), (7), 
(13) and (14) we know that the channel-fading coefficients 
vector β is extended to two K-sparse vectors h1 and h2, which 
can be expressed as 

1 1,1 1,2 1,... ,Kh h h   h 0 0 0 0 0       (19) 

2 2,1 2,2 2,... Kh h h   h 0 0 0 0 0 .      (20) 

Actually, the nonzero elements in h1 and h2 are the same, that 

is, 1, 1 2, 1 1 2{ } and { } { , , ... , }K K
k k k k Kh h      . In practice, the 

estimates 
1, 1{ }K

k kh   and 2, 1{ }K
k kh  are obtained independently 

in the case of; so, they are approximately equal. When h1 and 

h2 are obtained, we sort 
1, 1{ }K

k kh   and 
2, 1{ }K

k kh   in 

descending order, respectively, and have   
1,1 1,2 1,Kh h h  

 
and   

2,1 2,2 2,Kh h h   . Then, we can get the TOA 

estimates   1{ }K
k k   and  1{ }K

k k   according to the positions of 

nonzero values 
1, 1{ }K

k kh   and 2, 1{ }K
k kh   in h1 and h2, and they 

are then paired.  

4. Major Steps for Joint Estimation of TOA and DOA  

Till now, we have achieved the proposal for joint TOA and 
DOA estimation in IR-UWB systems based on the sparse 
representation framework. We show the major steps of the 
proposed algorithm as follows: 

1) Transform the transmitted and received signals into 
frequency domain and obtain S, Y1, and Y2. 

2) Construct overcomplete dictionaryE and denote (6) and 
(7) by a sparse representation, which are shown in (13) and 
(14). 

3) Recover the K-sparse vectors h1 and h2 via OMP algorithm 
and then the TOA estimates  1{ }K

k k   and  1{ }K
k k   can be 

determined from the sparse structure by plotting h1 and h2 
on the grid of time samples. 

4) Estimate the DOA estimates k  via (11). 
Remark 1: In practice, the information on the number of the 

multipath rays K is always unknown, but it can be estimated 
through some known techniques [35]. 

5. Advantages of Proposed Algorithm 

The proposed algorithm has the following advantages: 
1) The proposed algorithm can obtain paired TOA estimation, 

while the matrix pencil algorithm [18] cannot. 
2) The proposed algorithm can work well with one single 

snapshot, which will be shown in section V. 
3) The proposed algorithm has better parameter estimation 

performance than that of the matrix pencil algorithm, 
conventional PM algorithm, ESPRIT algorithm, and the 

algorithms in [19] and [20], which will also be shown in 
section V. 

IV. CRB 

In this section, we will derive the CRB of the joint-
estimation performance based on the data model in the paper. 
According to [36] and [37], we can derive the CRB of TOA 
estimation as follows: 

2 1
0

( , )
ˆRe{ }

2
H T

TOA  
    ACRB D Π D P ,    (21) 

where 2
0  represents the noise power, ( , ) ,





 
 

  
 

SE
A

SE
 

    
1 1 2 2 1 1 2 2

1 2 1 2
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K
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    
 
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a a a a a
D 

( , )
... K K

K

 





 

a
, and ( , )k k a  and ( , )k k a  are the kth 

column of ( , ) A  and ( , ), A   respectively. The 

orthogonal projection matrix of A is ( , ) 
 AΠ  

1
2 2 ( , )( ( , ) ( , )) ( , )H H

M M        
 I A A A A and

ˆ ˆ
ˆ

ˆ ˆ
s s

s s

 
  
  

P P
P

P P
 

with ˆ .H
s P ββ  Hadamard’s product is represented by  . 

From (21), we can rewrite the matrix CRBTOA as 

TOA








 
  
 

CRB
CRB

CRB
 with CRB  being the CRB 

matrix of τ, and CRB  being the CRB matrix of  . The 

symbol  denotes a part that is not considered in this paper.  
According to (11), the CRB matrix of DOA can be 

expressed as 

  
2

21
2

c
DOA d  

 CRB CRB CRB Ψ ,     (22) 

where 1diag([cos( ),..., cos( )])K Ψ with , 1,...,k k K   

being the perfect DOA of the kth path. 

V. Simulation Results 

To assess the parameter estimation performance of the 
proposed algorithm, we present Monte Carlo simulations. 
Define the signal-to-noise ratio (SNR) and root-mean-square 
error (RMSE) as 

2

2

( )
10 lg ,

( )
F

F

y t
SNR

w t
               (23) 
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Table 1. Simulation parameters. 

Parameter Value 

Shape factor Γ 0.25 ns 

Chip duration Tc 2 ns 

Symbol duration Ts 10 ns 

Modulation BPSK 

Frequency samples M 64 

Number of multipath K  3 

Channel-fading coefficients βk 
 π/20.7, 0.4 , 0.2je  

True estimates τk 
 0.3 ns, 0.46 ns, 0.62 ns 

True estimates k  0.2 ns, 0.3 ns, 0.5 ns 

Space between the antennas d 10 cm 

Distance between adjacent grids 0.002 ns 

 

 

 

Fig. 3. UWB pulse waveform p(t).  
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where y(t) is the received time-domain signal, w(t) denotes the 

additive Gaussian white noise, and ,k m  stands for the 

estimate of k  in the mth Monte Carlo trial. In the 

simulations, we assume the UWB pulse-wave function is 
2 2 2 2( ) exp( 2π / )(1 4π / )p t t t     . The main simulation 

parameters are shown in Table 1. The shaping factor for the 

pulse is represented by  . The repetition of every symbol is 

Nc = 5, the chip duration is Tc = 2 ns, and the symbol duration is 

Ts = NcTc = 10 ns. We plot the transmitted BPSK-UWB signal 

s(t) and the UWB pulse-wave function p(t) in Figs. 3 and 4. 

Furthermore, we suppose that there are K=3 rays of BPSK-

UWB arriving signals whose arrival times corresponding to the 

two antennas are 1 1( , )  = (0.3 ns, 0.2 ns), 2 2( , )  = (0.46 ns,  

 

Fig. 4. Transmitted signal s(t).  
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Fig. 5. TOA estimation with SNR=0 dB. 
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0.3 ns) and 3 3( , )  = (0.62 ns, 0.5 ns), respectively. The 
UWB multipath channel-fading coefficients k  are known 
with π / 2[0.7 0.4 0.2] ,j Teβ and there are M=64 frequency 
samples with the received signal. The grid distance between 
adjacent grids is 0.002 ns. 

In Figs 5 and 6, we recover the sparse vectors h1 and h2 with 
different SNR and plot them on the grid of the time samples. 
Once h1 and h2 are obtained, the TOA estimates k  and k  
are determined. Figures 5 and 6 illustrate that the elements of 
the sparse vectors and the estimation of TOA become more 
accurate in collaboration with SNR increasing. 

Figures 7 and 8 show the TOA estimation results of the 
proposed algorithm over 50 Monte Carlo simulations with 
SNR = 0 dB and SNR = 10 dB. Figures 7 and 8 illustrate that 
our algorithm is effective for TOA estimation and the 
estimation precision improves as SNR increases. 

Figures 9 and 10 present the TOA- and DOA-estimation 
performance of the proposed algorithm for different values of  
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Fig. 6. TOA estimation with SNR=10 dB. 
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Fig. 7. TOA estimation with SNR=0 dB. 
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Fig. 8. TOA estimation with SNR=10 dB. 
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multipath K. It is indicated that the joint TOA and DOA 
estimation performance becomes better as K decreases. 

 

Fig. 9. TOA-estimation performance with different K. 
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Fig. 10. DOA-estimation performance with different K. 
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Fig. 11. TOA estimation comparison with different algorithms.
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Figures 11 and 12 display the TOA- and DOA-estimation 
performance comparison of the proposed algorithm with the 
conventional PM algorithm [13], matrix pencil algorithm [18], 
ESPRIT algorithm, and other new joint estimation algorithms 
in [19] and [20] for the two antennas case. Note that the  
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Fig. 12. DOA-estimation comparison with different algorithms.
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ESPRIT algorithm is based on the data model in this paper and 
that all the algorithms are working under the condition of one 
single snapshot. From Figs. 11 and 12, we can draw the 
conclusion that the proposed algorithm has better joint TOA 
and DOA estimation performance than the conventional PM 
algorithm, matrix pencil algorithm, ESPRIT algorithm, and the 
algorithms in [19] and [20].  

The conventional parameter-estimation algorithms PM, 
matrix pencil, and ESPRIT can all achieve reasonable 
estimation performances when collecting multiple snapshots. 
In the single snapshot condition, however, all these algorithms 
have poor estimation performances or even lose their 
effectiveness. Our algorithm is based on a sparse representation 
framework, where an l0 norm optimization is used based on an 
OMP algorithm. It works well with one single snapshot and as 
such, our algorithm has better joint parameter-estimation 
performance than other algorithms. 

VI. Conclusion 

In this paper, we have presented a new formulation of the 
joint TOA and DOA estimation problem for IR-UWB 
signals in a sparse-signal representation framework, where 
a l0 norm optimization is used based on an OMP algorithm. 
The proposed algorithm is able to estimate paired TOA and 
DOA parameters and has better joint TOA and DOA 
estimation performance than the conventional PM 
algorithm, matrix pencil algorithm, ESPRIT algorithm, and 
the algorithms in [19] and [20]. Numerical experiments 
illustrate the accuracy and efficacy of the proposed 
algorithm in a variety of parameters and scenarios. 
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