• Title/Summary/Keyword: Vector orientation

Search Result 172, Processing Time 0.026 seconds

Verification of Navigation System of Guided Munition by Flight Experiment (비행 실험을 통한 유도형 탄약 항법 시스템 검증)

  • Kim, Youngjoo;Lim, Seunghan;Bang, Hyochoong;Kim, Jaeho;Pak, Changho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.965-972
    • /
    • 2016
  • This paper presents results of flight experiments on a navigation algorithm including multiplicative extended Kalman filter for estimating attitude of the guided munition. The filter describes orientation of aircraft by data fusion with low-cost sensors where measurement update is done by multiplication, rather than addition, which is suitable for quaternion representation. In determining attitude from vector observations, the existing approach utilizes a 3-axis accelerometer as a 2-axis inclinometer by measuring gravity to estimate pitch and roll angles, while GNSS velocity is used to derive heading of the vehicle. However, during accelerated maneuvers such as coordinated flight, the accelerometer provides inadequate inclinometer measurements. In this paper, the measurement update process is newly defined to complement the vulnerability by using different vector observations. The acceleration measurement is considered as a result of a centrifugal force and gravity during turning maneuvers and used to estimate roll angle. The effectiveness of the proposed method is verified through flight experiments.

Overexpression of NtHSP70-1 Protects Chlorophyll from High Temperature in Plants (NtHSP70-1에 의한 클로로필의 고온 내성 효과)

  • Cho, Eun-Kyung;Hong, Choo-Bong
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.304-310
    • /
    • 2008
  • Heat shock protein 70 (HSP70) is known as molecular chaperone, the fundamental protein participating in various processes, from nascent protein synthesis to protection of proteins during abiotic stresses and developmental programs. However, their biological functions in plants are not yet well known. Here, NtHSP70-1 (AY372069), HSP70 of Nicotiana tabacum induced by heat stress was investigated. To analyze the protective role of NtHSP70-1, transgenic tobacco plants, which constitutively overexpressed NtHSP70-1 as well as contained either the vector alone or having NtHSP70-1 in the antisense orientation, were constructed. The altered NtHSP70-1 levels in plants were confirmed by western blotting and transgenic sense lines exhibited tolerance to heat stress. Seedlings with the constitutively expressed NtHSP70-1 grew as green or healthy plants after heat stress. In contrast, transgenic vector or antisense lines exhibited yellowing of leaves or some delay in growth, which finally led to death. Evaluation of chlorophyll contents of heat-shocked transgenic tobacco seedlings indicated that NtHSP70-1 contributes to thermotolerance by preventing chlorophyll synthesis in plants.

Recognition of dog's front face using deep learning and machine learning (딥러닝 및 기계학습 활용 반려견 얼굴 정면판별 방법)

  • Kim, Jong-Bok;Jang, Dong-Hwa;Yang, Kayoung;Kwon, Kyeong-Seok;Kim, Jung-Kon;Lee, Joon-Whoan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.1-9
    • /
    • 2020
  • As pet dogs rapidly increase in number, abandoned and lost dogs are also increasing in number. In Korea, animal registration has been in force since 2014, but the registration rate is not high owing to safety and effectiveness issues. Biometrics is attracting attention as an alternative. In order to increase the recognition rate from biometrics, it is necessary to collect biometric images in the same form as much as possible-from the face. This paper proposes a method to determine whether a dog is facing front or not in a real-time video. The proposed method detects the dog's eyes and nose using deep learning, and extracts five types of directional face information through the relative size and position of the detected face. Then, a machine learning classifier determines whether the dog is facing front or not. We used 2,000 dog images for learning, verification, and testing. YOLOv3 and YOLOv4 were used to detect the eyes and nose, and Multi-layer Perceptron (MLP), Random Forest (RF), and the Support Vector Machine (SVM) were used as classifiers. When YOLOv4 and the RF classifier were used with all five types of the proposed face orientation information, the face recognition rate was best, at 95.25%, and we found that real-time processing is possible.

Wavelet-Based Image Compression Using the Properties of Subbands (대역의 특성을 이용한 웨이블렛 기반 영상 압축 부호화)

  • 박성완;강의성;문동영;고성제
    • Journal of Broadcast Engineering
    • /
    • v.1 no.2
    • /
    • pp.118-132
    • /
    • 1996
  • This paper proposes a wavelet transform- based image compression method using the energy distribution. The proposed method Involves two steps. First, we use a wavelet transform for the subband decomposition. The original image Is decomposed into one low resolution subimage and three high frequency subimages. Each high frequency subimages have horizontal, vertical, and diagonal directional edges. The wavelet transform is luther applied to these high frequency subimages. Resultant transformed subimages have different energy distributions corresponding to different orientation of the high pass filter. Second, for higer compression ratio and computational effciency, we discard some subimages with small energy. The remaining subimages are encoded using either DPCM or quantization followed by entropy coding. Experimental results show that the proposed coding scheme has better performance in the peak signal to noise ratio(PSNR) and higher compression ratio than conventional image coding method using the wavelet transform followed by the straightforward vector quantization.

  • PDF

Real-Time Quad-Copter Tracking With Multi-Cameras and Ray-based Importance Sampling (복수카메라 및 Ray-based Importance Sampling을 이용한 실시간 비행체 추적)

  • Jin, Longhai;Jeong, Mun-Ho;Lee, Key-Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.899-905
    • /
    • 2013
  • In this paper, we focus on how to calibrate multi-cameras easily and how to efficiently detect quad-copters with small-numbered particles. Each particle is a six dimensional vector that is composed of 3D position and 3D orientation of a quad-copter in the space. Due to curse of dimensionality, that leads to explosive computational costs with a large amount of high-dimensioned particles. To detect efficiently, we need to put more particles in very promising spaces and few particles in other spaces. Though computational cost is lowered by minimizing particles, in order to track a quad-copter with multiple cameras in real-time, multiple images from the cameras should be synchronized and analyzed. Therefore, lots of the computations still need to be done. Because of this, GPGPU(General-Purpose computing on Graphics Processing Units) is implemented for parallel computing. This method has been successfully tested and gives accurate results in practical situations.

A Study on Modified Mask for Edge Detection in AWGN Environment (AWGN 환경에서 에지 검출을 위한 변형된 마스크에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2199-2205
    • /
    • 2013
  • In modern society the image processing has been applied to various digital devices such as smartphone, digital camera, and digital TV. In the field of image processing the edge detection is one of the important parts in the image processing procedure. The image edge means point that the pixel value is changed between background and object rapidly, and includes the important information such as magnitude, location, and orientation. The performance of the existing edge detection method is insufficient for the image degraded by AWGN(additive white Gaussian noise) because it detects edges by using small weighted masks. Therefore, in this paper, to detect edge in AWGN environment effectively, we proposed an algorithm that detects edge as calculated gradient of sorting vector which is transformed by estimated mask from new pixel according to each region.

HMM-based Upper-body Gesture Recognition for Virtual Playing Ground Interface (가상 놀이 공간 인터페이스를 위한 HMM 기반 상반신 제스처 인식)

  • Park, Jae-Wan;Oh, Chi-Min;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.11-17
    • /
    • 2010
  • In this paper, we propose HMM-based upper-body gesture. First, to recognize gesture of space, division about pose that is composing gesture once should be put priority. In order to divide poses which using interface, we used two IR cameras established on front side and side. So we can divide and acquire in front side pose and side pose about one pose in each IR camera. We divided the acquired IR pose image using SVM's non-linear RBF kernel function. If we use RBF kernel, we can divide misclassification between non-linear classification poses. Like this, sequences of divided poses is recognized by gesture using HMM's state transition matrix. The recognized gesture can apply to existent application to do mapping to OS Value.

Convergence change in a tunnel face approaching fault zones (파쇄대에 접근하는 터널의 내공변위 변화 해석)

  • Lee, In-Mo;Lee, Seung-Ju;Lee, Joo-Gong;Lee, Dae-Hyuck
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.235-245
    • /
    • 2002
  • The purpose of this study is to figure out the tendency of tunnel convergence during excavation and to present a methodology for the prediction of a fault zone ahead of a tunnel face by analyzing three dimensional displacements in various ways. 3-D numerical analysis was performed to investigate changes of tunnel convergence vectors near a fault zone and to propose a flow chart for predicting fault zones. Results of the site investigation and results of trend line analysis of in-situ data were compared to verify the usefulness of a trend line analysis. It is concluded that the orientation of faults can be predicted by using stereonets and the direction of initial stresses can be predicted from the arm length of a displacement vector as a tunnel approaches fault zones. The results of the trend line analysis coincided with those of the site investigation, and a methodology for the prediction of a fault zone was proposed.

  • PDF

Fire-Flame Detection using Fuzzy Finite Automata (퍼지 유한상태 오토마타를 이용한 화재 불꽃 감지)

  • Ham, Sun-Jae;Ko, Byoung-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.9
    • /
    • pp.712-721
    • /
    • 2010
  • This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have continuous and an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generated and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.

Kalman Filter for Estimation of Sensor Acceleration Using Six-axis Inertial Sensor (6축 관성센서를 이용한 센서가속도 추정용 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Although an accelerometer is a sensor that measures acceleration, it cannot be used by itself to measure the acceleration when the orientation of the sensor changes. This paper introduces a Kalman filter for the estimation of a sensor acceleration based on a six-axis inertial sensor (i.e., a three-axis accelerometer and three-axis gyroscope). The novelty of the proposed Kalman filter lies in the fact that its state vector includes not only the tilt angle variable but also the sensor acceleration. Thus, the filter can explicitly estimate the latter with a high accuracy. The accuracy of acceleration estimates were validated experimentally under three different dynamic conditions, using an optical motion capture system. It could be concluded that the performance of the proposed Kalman filter was comparable to that of the state-of-the-art estimation algorithm employed by the Xsens MTw. The proposed algorithm may be more suitable than inertial/magnetic sensor-based algorithms for various applications adopting six-axis inertial sensors.