• 제목/요약/키워드: Vector optimization

검색결과 471건 처리시간 0.024초

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

기울기 벡터장과 조건부 엔트로피 결합에 의한 의료영상 정합 (Medical Image Registration by Combining Gradient Vector Flow and Conditional Entropy Measure)

  • 이명은;김수형;김선월;임준식
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.303-308
    • /
    • 2010
  • 본 논문에서는 기울기 벡터장과 조건부 엔트로피를 결합한 의료영상 정합 방법을 제안한다. 정합 방법은 조건부 확률의 엔트로피에 기반한 측도를 수행한다. 먼저 공간적 정보를 얻기 위해 윤곽선 정보의 방향을 제공하는 기울기 정보인 기울기 벡터장을 계산한다. 다음으로 주어진 두 영상에서 픽셀의 밝기정보와 에지정보를 결합하여 조인트 히스토그램을 계산하여 조건부 엔트로피를 구하고, 이것을 두 영상의 정합측도로 사용한다. 제안된 방법의 성능평가를 위해 자기공명 영상과 변환된 컴퓨터단층촬영 영상에 기존 방법인 상호정보기반의 측도, 조건부 엔트로피만을 사용한 측도와 비교 실험을 수행한다. 실험결과로부터 제안한 방법이 기존의 최적화 방법들 보다 더 빠르고 정확한 정합임을 알 수 있다.

하이브리드 제어기를 사용한 유도전동기 벡터제어 (Vector Control of Induction Motor Using Hybrid Controller)

  • 류경윤;이홍희
    • 전력전자학회논문지
    • /
    • 제5권4호
    • /
    • pp.352-357
    • /
    • 2000
  • 벡터제어기법은 유도전동기의 고성능 운전을 위해 널리 사용되고 있다. 벡터제어기법을 사용해 전동기의 속도제어를 행할 정우 전동기의 속도나 전류를 제어하기 위해 주로 PI제어기가 사용되고 있다. 이 경우 유도전동기의 동 특성은 PI제어기의 이득과 밀접한 관계를 갖고 있으며 유도전동기의 고성능제어를 위해서는 PI제어기의 이득을 최적화 시킬 필요가 있다. 그러나 PI제어기의 이득을 최적화 시키기 위해서는 전동기제이 시스템의 등가모델을 정확히 알아야 하기 때문에 변동 부하조건하에서 일관성 있는 최적 이득값을 얻기란 대단히 힘들다. 본 논문에서는 이러한 PI제어기의 단점을 보완하기 위해 과도상태만을 제어하기 위한 간략화된 퍼지제어기와 정상상태 제어를 위한 기존의 PI제어기를 병렬로 구성한 하이브리드 제어기를 제안하고 이를 실제 유도전동기의 벡터제어에 적용하여 알고리즘의 타당성을 검증하였다.

  • PDF

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.561-574
    • /
    • 2018
  • In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제16권2호
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.

압전 수정진동자의 설계민감도 해석과 위상 최적설계 (Design Sensitivity Analysis and Topology Optimization of Piezoelectric Crystal Resonators)

  • 하윤도;조선호;정상섭
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 2005
  • Using higher order Mindlin plates and piezoelectric materials, eigenvalue problems are considered. Since piezoelectric crystal resonators produce a proper amount of electric signal for a thickness-shear frequency, the objective is to decouple the thickness-shear mode from the others. Design variables are the bulk material densities corresponding to the mass of masking plates for electrodes. The design sensitivity expressions for the thickness-shear frequency and mode shape vector are derived using direct differentiation method(DDM). Using the developed design sensitivity analysis (DSA) method, we formulate a topology optimization problem whose objective function is to maximize the thickness-shear component of strain energy density at the thickness-shear mode. Constraints are the allowable volume and area of masking plate. Numerical examples show that the optimal design yields an improved mode shape and thickness-shear energy.

  • PDF

Robust Algorithms for Combining Multiple Term Weighting Vectors for Document Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.81-86
    • /
    • 2016
  • Term weighting is a popular technique that effectively weighs the term features to improve accuracy in document classification. While several successful term weighting algorithms have been suggested, none of them appears to perform well consistently across different data domains. In this paper we propose several reasonable methods to combine different term weight vectors to yield a robust document classifier that performs consistently well on diverse datasets. Specifically we suggest two approaches: i) learning a single weight vector that lies in a convex hull of the base vectors while minimizing the class prediction loss, and ii) a mini-max classifier that aims for robustness of the individual weight vectors by minimizing the loss of the worst-performing strategy among the base vectors. We provide efficient solution methods for these optimization problems. The effectiveness and robustness of the proposed approaches are demonstrated on several benchmark document datasets, significantly outperforming the existing term weighting methods.

Sparse Multinomial Kernel Logistic Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2008
  • Multinomial logistic regression is a well known multiclass classification method in the field of statistical learning. More recently, the development of sparse multinomial logistic regression model has found application in microarray classification, where explicit identification of the most informative observations is of value. In this paper, we propose a sparse multinomial kernel logistic regression model, in which the sparsity arises from the use of a Laplacian prior and a fast exact algorithm is derived by employing a bound optimization approach. Experimental results are then presented to indicate the performance of the proposed procedure.

Dorsal Hand Vein Identification Based on Binary Particle Swarm Optimization

  • Benziane, Sarah Hachemi;Benyettou, Abdelkader
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.268-284
    • /
    • 2017
  • The dorsal hand vein biometric system developed has a main objective and specific targets; to get an electronic signature using a secure signature device. In this paper, we present our signature device with its different aims; respectively: The extraction of the dorsal veins from the images that were acquired through an infrared device. For each identification, we need the representation of the veins in the form of shape descriptors, which are invariant to translation, rotation and scaling; this extracted descriptor vector is the input of the matching step. The optimization decision system settings match the choice of threshold that allows accepting/rejecting a person, and selection of the most relevant descriptors, to minimize both FAR and FRR errors. The final decision for identification based descriptors selected by the PSO hybrid binary give a FAR =0% and FRR=0% as results.