The Journal of the Korea institute of electronic communication sciences
/
v.5
no.1
/
pp.23-30
/
2010
The H.264/AVC is increasingly used in broadcast video applications such as Internet Protocol television (IPTV), digital multimedia broadcasting (DMB) because of high compression performance. But the H.264/AVC coded video can be delivered to the widespread end-user equipment for MPEG-2 after transcoding between this video standards. This paper suggests a new transcoding algorithm for H.264/AVC to MPEG-2 transcoder that uses motion vector clustering in order to reduce the complexity without loss of video quality. The proposed method is exploiting the motion information gathered during h.264 decoding stage. To reduce the search space for the MPEG-2 motion estimation, the predictive motion vector is selected with a least distortion of the candidated motion vectors. These candidate motion vectors are considering the correlation of direction and distance of motion vectors of variable blocks in H.264/AVC. And then the best predictive motion vector is refined with full-search in ${\pm}2$ pixel search area. Compared with a cascaded decoder-encoder, the proposed transcoder achieves computational complexity savings up to 64% with a similar PSNR at the constant bitrate(CBR).
In this paper, we propose a method to select motion vector predictor by considering prediction structure of a multi view content for coding efficiency of multi view coding which is being standardized in JVT. Motion vector of a different tendency is happened while carrying out temporal and view reference prediction of multi-view video coding. Also, due to the phenomena of motion vectors being searched in both temporal and view order, the motion vectors do not agree with each other resulting a decline in coding efficiency. This paper is about how the motion vector predictor are selected with information of prediction structure. By using the proposed method, a compression ratio of the proposed method in multi-view video coding is increased, and finally $0.03{\sim}0.1$ dB PSNR(Peak Signal-to-Noise Ratio) improvement was obtained compared with the case of JMVM 3.6 method.
Among the Foley sound generation models that have recently begun to be studied, a sound generation technique using the Vector Quantized-Variational AutoEncoder (VQ-VAE) structure and generation model such as Pixelsnail are one of the important research subjects. On the other hand, in the field of deep learning-based acoustic signal compression, residual vector quantization technology is reported to be more suitable than the conventional VQ-VAE structure. Therefore, in this paper, we aim to study whether residual vector quantization technology can be effectively applied to the Foley sound generation. In order to tackle the problem, this paper applies the residual vector quantization technique to the conventional VQ-VAE-based Foley sound generation model, and in particular, derives a model that is compatible with the existing models such as Pixelsnail and does not increase computational resource consumption. In order to evaluate the model, an experiment was conducted using DCASE2023 Task7 data. The results show that the proposed model enhances about 0.3 of the Fréchet audio distance. Unfortunately, the performance enhancement was limited, which is believed to be due to the decrease in the resolution of time-frequency domains in order to do not increase consumption of the computational resources.
This paper proposes a wavelet transform- based image compression method using the energy distribution. The proposed method Involves two steps. First, we use a wavelet transform for the subband decomposition. The original image Is decomposed into one low resolution subimage and three high frequency subimages. Each high frequency subimages have horizontal, vertical, and diagonal directional edges. The wavelet transform is luther applied to these high frequency subimages. Resultant transformed subimages have different energy distributions corresponding to different orientation of the high pass filter. Second, for higer compression ratio and computational effciency, we discard some subimages with small energy. The remaining subimages are encoded using either DPCM or quantization followed by entropy coding. Experimental results show that the proposed coding scheme has better performance in the peak signal to noise ratio(PSNR) and higher compression ratio than conventional image coding method using the wavelet transform followed by the straightforward vector quantization.
Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.8
/
pp.3295-3311
/
2020
With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.5
/
pp.653-659
/
2011
In general, electrocardiogram(ECG) signals are sampled with a frequency over 200Hz and stored for a long time. It is required to compress data efficiently for storing and transmitting them. In this paper, a method for compression of ECG data is proposed, using by Non Uniform B-spline approximation, which has been widely used to approximation theory of applied mathematics and geometric modeling. ECG signals are compressed and reconstructed using B-spline basis function which curve has local controllability and control a shape and curve in part. The proposed method selected additional knot with each step for minimizing reconstruction error and reduced time complexity. It is established that the proposed method using B-spline approximation has good compression ratio and reconstruct besides preserving all feature point of ECG signals, through the experimental results from MIT-BIH Arrhythmia database.
Although Motion estimation (ME) plays an important role in digital video compression, it requires a complicated search procedure to find an optimal motion vector. Multi-view video is obtained by capturing one three-dimensional scene with many cameras at different positions. The computational complexity of motion estimation for Multi-view video coding increases in proportion to the number of cameras. To reduce computational complexity and maintain the image quality, a low complexity motion estimation search method is proposed in this paper. The proposed search method consists of four-grid diamond search patten, two-gird diamond search pattern and TZ 2 Point search pattern. These search patterns exploit the characteristics of the distribution of motion vectors to place the search points. Experiment results show that the speedup improvement of the proposed method over TZ search method (JMVC) can be up to 1.8~4.5 times faster by reducing the computational complexity and the image quality degradation is about to 0.01~0.24 (dB).
Journal of the Institute of Electronics Engineers of Korea SP
/
v.49
no.3
/
pp.74-80
/
2012
In resolution-constrained quantization, the size of Voronoi cell varies depending on probability density function of the input data, which causes large amount of distortion outliers. We propose a vector quantization method that reduces distortion outliers by combining the generalized Lloyd algorithm (GLA) and the cell-size constrained vector quantization (CCVQ) scheme. The training data are divided into the inside and outside regions according to the size of Voronoi cell, and consequently CCVQ and GLA are applied to each region, respectively. As CCVQ is applied to the densely populated region of the source instead of GLA, the number of centroids for the outside region can be increased such that distortion outliers can be decreased. In real-world environment, source mismatch between training and test data is inevitable. For the source mismatch case, the proposed algorithm improves performance in terms of average distortion and distortion outliers.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.5
/
pp.42-47
/
2017
In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.
Kim, Joo-Sung;Lee, Yang-Woo;Hur, Kang-In;Ahn, Jum-Young
The Journal of the Acoustical Society of Korea
/
v.15
no.2
/
pp.40-48
/
1996
In this paper, a 40 dimensional segment vector with 4 frame and 7 frame width in every monosyllable interval was compressed into a 10, 14, 20 dimensional vector using K-L expansion and neural networks, and these was used to speech recognition feature parameter for CHMM. And we also compared them with CHMM added as feature parameter to the discrete duration time, the regression coefficients and the mixture distribution. In recognition test at 100 monosyllable, recognition rates of CHMM +${\bigtriangleup}$MCEP, CHMM +MIX and CHMM +DD respectively improve 1.4%, 2.36% and 2.78% over 85.19% of CHMM. And those using vector compressed by K-L expansion are less than MCEP + ${\bigtriangleup}$MCEP but those using K-L + MCEP, K-L + ${\bigtriangleup}$MCEP are almost same. Neural networks reflect more the speech dynamic variety than K-L expansion because they use the sigmoid function for the non-linear transform. Recognition rates using vector compressed by neural networks are higher than those using of K-L expansion and other methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.